Skip to main content

Advertisement

Log in

Interactions of a Low Molecular Weight Inhibitor from Streptomyces sp. MBR04 with Human Cathepsin D: Implications in Mechanism of Inactivation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cathepsin D, a lysosomal aspartic protease, is of potential interest as a target for drug design due to its implication in breast and ovarian cancer. The article reports a low molecular weight cathepsin D inhibitor from Streptomyces sp. MBR04. The Mr of the inhibitor was 1,078 Da as determined by MALDI-TOF, and the amino acid analysis showed the presence of Asp, Asp, Gly, Ala, Lys, Leu, Tyr, Trp residues. The steady-state kinetic interactions revealed reversible, competitive, slow-tight-binding nature of the inhibitor with an IC50 and K i values of 3.2 and 2.5 nM, respectively. The binding of the inhibitor with the enzyme and the subsequent conformational changes were monitored by exploiting the intrinsic fluorescence of the surface exposed Trp-54 residue. Based on the fluorescence and circular dichroism studies, we demonstrate that the inhibitor binds to the active site of cathepsin D and causes inactivation. All these kinetic, thermodynamic, and quenching studies suggest that the newly isolated peptidic inhibitor could be a potential scaffold to study and can be used to develop new potent therapeutic lead molecule for the development of drugs. The inhibitor will be significant as a potential lead molecule to target cathepsin D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dash, C., Kulkarni, A., Dunn, B., & Rao, M. (2003). Critical Reviews in Biochemistry and Molecular, 38, 89–119.

    Article  CAS  Google Scholar 

  2. Liaudet-Coopman, E., Beaujouin, M., Derocq, D., Garcia, M., Glondu-Lassis, M., Laurent-Matha, V., Prebois, C., Rochefort, H., & Vignon, F. (2006). Cancer Letters, 237, 167–179.

    Article  CAS  Google Scholar 

  3. Masson, O., Bach, A.-S., Derocq, D., Prebois, C., Laurent-Matha, V., Pattingre, S., & Liaudet-Coopman, E. (2010). Biochimie, 92, 1635–1643.

    Article  CAS  Google Scholar 

  4. Benes, P., Vetvicka, V., & Fusek, M. (2008). Critical Reviews in Oncology-Hematology, 68, 12–28.

    Article  Google Scholar 

  5. Siintola, E., Partanen, S., Stromme, P., Haapanen, A., Haltia, M., et al. (2006). Brain, 129, 1438–1445.

    Article  Google Scholar 

  6. Caffrey, R., Placha, L., Barinka, C., Hradilek, M., Dostal, J., Sajid, M., McKerrow, J. H., Majer, P., Konvalinka, J., & Vondrasek, J. (2005). Biological Chemistry, 386, 339–349.

    Article  CAS  Google Scholar 

  7. Garcia, M., Platet, N., Liaudet, E., Laurent, V., Derocq, D., Brouillet, J.-P., & Rochefort, H. (1996). Stem Cells, 14, 642–650.

    Article  CAS  Google Scholar 

  8. Lee, A. Y., Gulnik, S. V., & Erickson, J. W. (1998). Nature Structural Biology, 5, 866–871.

    Article  CAS  Google Scholar 

  9. Veerapandian, B., Cooper, J. B., Sali, A., Blundell, T. L., Rosati, R. L., Dominy, B. W., Damon, D. B., & Hoover, D. J. (1992). Protein Science, 1, 322–328.

    Article  CAS  Google Scholar 

  10. Baldwin, E. T., Bhat, N., Gulnik, S., Hosur, M. V., Sowder, R. C., Cachau, R. E., Collins, J., Silva, A. M., & Erickson, J. W. (1993). Proceedings of the National Academy of Sciences, 90, 6796–6800.

    Article  CAS  Google Scholar 

  11. Metcalf, P., & Fusek, M. (1993). EMBO Journal, 12, 1293–1302.

    CAS  Google Scholar 

  12. Suguna, K., Padlan, E. A., Smith, C. W., Catlson, W. D., & Davies, D. R. (1987). Proceedings of the National Academy of Sciences, 84, 7009–7013.

    Article  CAS  Google Scholar 

  13. James, M. N. G., Sielecki, A. R., Hayakawa, K., & Gelb, M. H. (1992). Biochemistry, 31, 3872–3888.

    Article  CAS  Google Scholar 

  14. Gieselmann, V. R., Pohlmann, A., Hasilik, A., & Figura, K. (1983). Journal of Cell Biology, 101, 824–829.

    Google Scholar 

  15. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  16. Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). Bioinformatics, 17, 1244–1245.

    Article  CAS  Google Scholar 

  17. Cavallini, D., Graziani, M. T., & Dupre, S. (1966). Nature, 212, 294–295.

    Article  CAS  Google Scholar 

  18. Spande, T.F. & Witkop, B. (1967). Methods in Enzymology. In C.H.W. Hirs (Ed.), NY: Academic press, pp. 498-506.

  19. Schagger, H. (2006). Nature Protocols, 1, 16–22.

    Article  Google Scholar 

  20. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  21. Walsh, K.A. (1970). In Methods in enzymology (pp. 41-63). NY: Academic press.

  22. Arnon, R. (1970). In Methods in enzymology (pp. 226-244). NY: Academic press.

  23. Grant, G. A., Eisen, Z. A., & Bradshaw, R. A. (1970). Methods in enzymology (pp. 722–734). NY: Academic.

    Google Scholar 

  24. Agarwal, N., & Rich, D. H. (1983). Analytical Biochemistry, 130, 158–165.

    Article  CAS  Google Scholar 

  25. Dixon, M. (1953). Biochemical Journal, 55, 170–171.

    CAS  Google Scholar 

  26. Morrison, J. F., & Stone, S. R. (1985). Comments. Molecular and Cellular Biophysics, 2, 347–368.

    CAS  Google Scholar 

  27. Beith, J. G. (1995). Methods in Enzymology, 248, 59–84.

    Article  Google Scholar 

  28. Morrison, J. F., & Walsh, C. T. (1988). Advances in Enzymology and Related Areas of Molecular Biology, 61, 201–302.

    CAS  Google Scholar 

  29. Houtzager, V., Oullet, M., Falgueyret, J. P., Passmore, L. A., Bayly, C., & Percival, M. D. (1996). Biochemistry, 35, 10974–10984.

    Article  CAS  Google Scholar 

  30. Lakowicz, J.R. (1983). In Principles of Fluorescence Spectroscopy (pp.180-195). NY: Plenum press.

  31. Merelo, J. J., Andrade, M. A., Prieto, A., & Moran, F. (1994). Neurocomputing, 6, 443–454.

    Article  Google Scholar 

  32. Menon, V., & Rao, M. (2013). International Journal of Biological Macromolecules, 51, 165–174.

    Article  Google Scholar 

  33. Scott, C. J., & Taggart, C. C. (2010). Biochimie, 92, 1681–1688.

    Article  CAS  Google Scholar 

  34. Sampath-Kumar, P. S., & Fruton, J. S. (1974). Proceedings of the National Academy of Sciences, 71, 1070–1072.

    Article  CAS  Google Scholar 

  35. James, M. N. G., Sielecki, A., Salituro, F., Rich, D. H., & Hofmann, T. (1982). Proceedings of the National Academy of Sciences, 79, 6137–6141.

    Article  CAS  Google Scholar 

  36. Wolfenden, R. (1976). Annual Review of Biophysics and Bioengineering, 5, 271–306.

    Article  CAS  Google Scholar 

  37. Kati, W. M., Saldivar, A. S., Mohamadi, F., Sham, H. L., Laver, W. G., & Kohlbrenner, W. E. (1998). Biochemical and Biophysical Research Communications, 244, 408–413.

    Article  CAS  Google Scholar 

  38. Knight, C. G., & Barret, A. J. (1976). Biochemical Journal, 155, 117–125.

    CAS  Google Scholar 

  39. Pawagi, A. B., & Deber, C. M. (1990). Biochemistry, 29, 950–955.

    Article  CAS  Google Scholar 

  40. Cheung, H.C. (1991). In Topics in Fluorescence Spectroscopy (pp.127-176). NY: Plenum press.

  41. Gacko, M., Minarowska, A., Karwowska, A., & Minarowski, L. (2007). Folia Histochemica et Cytobiologica, 45, 291–313.

    CAS  Google Scholar 

  42. Lin, T.-Y., & William, H. R. (1979). Journal Biological Chemistry, 254, 11875–11883.

    CAS  Google Scholar 

Download references

Acknowledgment

MR and VM acknowledge the financial support and the senior research fellowship from CSIR Emeritus Scheme, Govt. of India, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Rao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 56 kb)

Fig. S2

(DOC 110 kb)

Fig. S3

(DOC 104 kb)

Table S1

(DOC 55 kb)

Table S2

(DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menon, V., Rao, M. Interactions of a Low Molecular Weight Inhibitor from Streptomyces sp. MBR04 with Human Cathepsin D: Implications in Mechanism of Inactivation. Appl Biochem Biotechnol 174, 1705–1723 (2014). https://doi.org/10.1007/s12010-014-1009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1009-9

Keywords

Navigation