Skip to main content
Log in

Performance of a Single-Chamber Microbial Fuel Cell Degrading Phenol: Effect of Phenol Concentration and External Resistance

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The performance of a single-chamber microbial fuel cell (MFC) using wastewater containing phenol as the anodic fuel was evaluated. The evaluation was performed considering the effects of the presence of different phenol concentrations in the anodic fuel and the external resistance at which the cells were adapted. Maximum power and current densities of 49.8 mW m−2 and 292.8 mA m−2 were obtained, respectively. Microbial diversity on the anode surface remained relatively stable when the phenol concentration was increased. Pseudomonas sp. was the most abundant microorganism in the MFC, followed by the genus Geobacter and Shewanella. Phenol degradation was mainly conducted by bacteria present in the wastewater, and its presence did not affect the electricity generation. The operation of the MFC with a resistance different to the adaptation resistance produced lower current and power densities; however, the variation in external resistances did not adversely affect the phenol degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, Z. J., Zhang, X. W., Zeng, Y. X., & Lei, L. C. (2009). Bioresource Technology, 100, 2551–2555.

    Article  CAS  Google Scholar 

  2. Ieropoulos, L., Greenman, J., Melhuish, C., & Hart, J. (2005). Journal of Power Sources, 145, 253–256.

    Article  CAS  Google Scholar 

  3. Logan, B. E., Hamelers, B., Rozendal, R. A., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Environmental Science and Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  4. Liu, H., & Logan, B. E. (2004). Environmental Science and Technology, 38, 4040–4046.

    Article  CAS  Google Scholar 

  5. Rismani-Yazdi, H., Carver, S. M., Christy, A. D., & Tuovinen, I. H. (2008). Journal of Power Sources, 180, 683–694.

    Article  CAS  Google Scholar 

  6. Jadhav, G. S., & Ghangrekar, M. M. (2009). Bioresource Technology, 100, 717–723.

    Article  CAS  Google Scholar 

  7. Aelterman, P., Versichele, M., Marzorati, M., Boon, N., & Verstraete, W. (2008). Bioresource Technology, 99, 8895–8902.

    Article  CAS  Google Scholar 

  8. Huang, L. P., Cheng, S. A., & Chen, G. H. (2011). Journal of Chemical Technology and Biotechnology, 86, 481–491.

    Article  CAS  Google Scholar 

  9. Catal, T., Fan, Y. Z., Li, K. C., Bermek, H., & Liu, H. (2008). Journal of Power Sources, 180, 162–166.

    Article  CAS  Google Scholar 

  10. Luo, H. P., Liu, G. L., Zhang, R. D., & Jin, S. (2009). Chemical Engineering Journal, 147, 259–264.

    Article  CAS  Google Scholar 

  11. Song, T. S., Wu, X. Y., & Zhou, C. C. (2014). Bioprocess and Biosystems Engineering, 37, 133–138.

    Article  CAS  Google Scholar 

  12. American Public Health Association, American Water Works Association, Water Environment Federation. (2005). Standard methods for the examination of water and wastewater, 21st ed. Washington D.C.

  13. Buitrón, G., Schoeb, M. E., Moreno-Andrade, I., & Moreno, J. A. (2005). Water Research, 39, 1015–1024.

    Article  Google Scholar 

  14. Muyzer, G., Teske, A., Wirsen, C. O., & Jannasch, H. W. (1995). Archives of Microbiology, 164, 165–172.

    Article  CAS  Google Scholar 

  15. Hammer, Ø., Harper, D.A.T., & Ryan, P.D. (2001). Palaeontologia Electronica, 4, art.4. 1–9.

  16. Du, Z., Li, H., & Gu, T. (2007). Biotechnology Advances, 25, 464–482.

    Article  CAS  Google Scholar 

  17. Pham, T. H., Boon, N., De Maeyer, K., Höfte, M., Rabaey, K., & Verstraete, W. (2008). Applied Microbiology and Biotechnology, 80, 985–993.

    Article  CAS  Google Scholar 

  18. Quan, X. C., Quan, Y. P., & Tao, K. (2012). Chemical Engineering Journal, 210, 150–156.

    Article  CAS  Google Scholar 

  19. Lovley, D. R. (2008). Current Opinion in Biotechnology, 19, 564–571.

    Article  CAS  Google Scholar 

  20. Franks, A. E., & Nevin, K. (2010). Energies, 3, 899–919.

    Article  CAS  Google Scholar 

  21. Krastanov, E., Alexieva, Z., & Yemendzhiev, H. (2013). Engineering in Life Science, 13, 76–87.

    Article  CAS  Google Scholar 

  22. Shen, F. T., Huang, H. R., Arun, A. B., Lu, H. L., Lin, T. C., Rekha, P. D., & Young, C. C. (2007). Canadian Journal of Microbiology, 53, 768–774.

    Article  CAS  Google Scholar 

  23. Zhang, L., Zhu, X., Li, J., Liao, Q., & Ye, D. D. (2011). Journal of Power Sources, 196, 6029–6035.

    Article  CAS  Google Scholar 

  24. Lyon, D. Y., Buret, F., Vogel, T. M., & Monier, J. M. (2010). Bioelectrochemistry, 78, 2–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by DGAPA-UNAM through project PAPIIT (IN104710). The technical assistance of Carlos Cervantes Astorga and Jaime Perez Trevilla is acknowledged.

Conflict of Interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Buitrón.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buitrón, G., Moreno-Andrade, I. Performance of a Single-Chamber Microbial Fuel Cell Degrading Phenol: Effect of Phenol Concentration and External Resistance. Appl Biochem Biotechnol 174, 2471–2481 (2014). https://doi.org/10.1007/s12010-014-1195-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1195-5

Keywords

Navigation