Skip to main content

Advertisement

Log in

Enhanced Enzymatic Hydrolysis of Waste Paper for Ethanol Production Using Separate Saccharification and Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol produced from lignocellulosic biomass is a renewable alternative to diminishing petroleum-based liquid fuels. In this study, the feasibility of ethanol production from waste paper using the separate hydrolysis and fermentation (SHF) was investigated. Two types of waste paper materials, newspaper and office paper, were evaluated for their potential to be used as a renewable feedstock for the production of fermentable sugars via enzymatic hydrolysis of their cellulose fractions. Hydrolysis step was conducted with a mixture of cellulolytic enzymes produced locally by Trichoderma reesei Rut-C30 (cellulase-overproducing mutant) and Aspergillus niger F38 cultures. Surfactant pretreatment effect on waste paper enzymatic digestibility was studied and Triton X-100 at 0.5 % (w w−1) has improved the digestibility of newspaper about 45 %. The effects of three factors (dry matter quantity, phosphoric acid pretreatment and hydrolysis time) on the extent of saccharification were also assessed and quantified by using a methodical approach based on response surface methodology. Under optimal hydrolysis conditions, maximum degrees of saccharification of newspaper and office paper were 67 and 92 %, respectively. Sugars released from waste paper were subsequently converted into ethanol (0.38 g ethanol g−1 sugar) with Saccharomyces cerevisiae CTM-30101.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang, Y. H. P., Berson, E., Sarkanen, S., & Dale, B. E. (2009). Applied Biochemistry and Biotechnology, 153, 80–83.

    Article  CAS  Google Scholar 

  2. Talebniaa, F., & Taherzadeh, M. J. (2012). Carbohydrate Polymers, 87, 2149–2153.

    Article  Google Scholar 

  3. Rosgaard, L., Pedersen, S., & Meyer, A. S. (2007). Applied Biochemistry and Biotechnology, 143, 284–296.

    Article  CAS  Google Scholar 

  4. Foyle, T., Jennings, L., & Mulcahy, P. (2007). Bioresource Technology, 97, 3026–3036.

    Article  Google Scholar 

  5. Chen, M., Zhao, J., & Xia, L. (2008). Carbohydrate Polymers, 71, 411–415.

    Article  CAS  Google Scholar 

  6. Bhat, M. K., & Bhat, S. (1997). Biotechnology Advances, 15, 583–620.

    Article  CAS  Google Scholar 

  7. Saranraj, P., Stella, D., & Reetha, D. (2012). International Journal of Biochemistry and Biotech Science, 1, 1–12.

    Google Scholar 

  8. Nakari-Setala, T., & Penttila, M. (1995). Applied and Environmental Microbiology, 61, 3650–3655.

    CAS  Google Scholar 

  9. Wu, C. C., & Cheng, C. (2005). Journal of the Chinese Chemical Society, 52, 85–95.

    CAS  Google Scholar 

  10. Li, C., Matsunaga, T., Seki, K., Yoshimoto, M., Furumoto, K., Fukunaga, K., & Nakao, K. (2006). Chemical Engineering and Technology, 29, 1090–1096.

    Article  CAS  Google Scholar 

  11. Dubey, A. K., Gupta, P. K., Garg, N., & Naithani, S. (2012). Carbohydrate Polymers, 88, 825–829.

    Article  CAS  Google Scholar 

  12. Peng, L., & Chen, Y. (2011). Biomass and Bioenergy, 35, 1600–1606.

    Article  CAS  Google Scholar 

  13. Zhang, Q., & Cai, W. (2008). Biomass and Bioenergy, 32, 1130–1135.

    Article  CAS  Google Scholar 

  14. Guerfali, M., Chaabouni, M., Gargouri, A., & Belghith, H. (2010). Applied Microbiology and Biotechnology, 85, 1361–1372.

    Article  CAS  Google Scholar 

  15. Aifa, M. S., Sayadi, S., & Gargouri, A. (1999). Biotechnology Letters, 21, 849–853.

    Article  CAS  Google Scholar 

  16. Mandels, M., & Weber, J. (1969). Advances in Chemistry Series, 95, 394–414.

    Google Scholar 

  17. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–68.

    CAS  Google Scholar 

  18. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Journal of Biotechnology, 23, 257–270.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Yanai, T., & Sato, M. (1999). American Journal of Enology and Viticulture, 50, 231–235.

    CAS  Google Scholar 

  21. Browning, B. L. (1967). Methods of wood chemistry, vol 1: phenolic substances (pp. 223–251). New York: Wiley-Interscience Publishers.

    Google Scholar 

  22. Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2011). BioResources, 6, 447–463.

    CAS  Google Scholar 

  23. Park, I., Kim, I., Kang, K., Sohn, H., Rhee, I., Jin, I., & Jang, H. (2010). Process Biochemistry, 45, 487–492.

    Article  CAS  Google Scholar 

  24. Yamashita, Y., Sasaki, C., & Nakamura, Y. (2010). Carbohydrate Polymers, 79, 250–254.

    Article  CAS  Google Scholar 

  25. Kim, H. J., Kim, S. B., & Kim, C. J. (2007). Biotechnology and Bioprocess Engineering, 12, 147–151.

    Article  CAS  Google Scholar 

  26. Mathieu, D., Nony, J., Phan-Tan-Luu, R., & Nemrod, W. (2000). New Efficient Methodology for Research using Optimal Design (NEMROD) Software. Marseille: LPRAI.

    Google Scholar 

  27. Sukumaran, R. K., Singhania, R. R., Mathew, G. M., & Pandey, A. (2009). Renewable Energy, 34, 421–424.

    Article  CAS  Google Scholar 

  28. Ahamed, A., & Vermette, P. (2008). Biochemical Engineering Journal, 42, 41–46.

    Article  CAS  Google Scholar 

  29. Guerfali, M., Gargouri, A., & Belghith, H. (2008). Applied Biochemistry and Biotechnology, 150, 267–279.

    Article  CAS  Google Scholar 

  30. Eleazer, W. E., Odle, W. S., Wang, Y. S., & Barlaz, M. A. (1997). Environmental Science and Technology, 31, 911–917.

  31. Wu, B., Taylor, C. M., Knappe, D. R. U., Nanny, M. A., & Barlaz, M. A. (2001). Environmental Science and Technology, 35, 4569–4576.

  32. Wang, L., Templer, R., & Murphy, R. J. (2012). Energy and Environmental Science, 5, 8281–8291.

  33. Barlaz, M. A. (2006). Waste Management, 26(4), 321–333.

  34. Chu, K. H., & Feng, X. (2012). Process Safety and Environmental Protection, 91, 123–130.

  35. Garcia-Kirchner, O., Segura-Garanados, M., & Rodríguez-Pascual, P. (2005). Applied Biochemistry and Biotechnology, 121–124, 347–359.

    Article  Google Scholar 

  36. Kim, I., Lee, B., Park, J. Y., Choi, S. A., & Han, J. I. (2014). Carbohydrate Polymers, 99, 563–567.

    Article  CAS  Google Scholar 

  37. Wu, J., & Ju, L. K. (1998). Biotechnology Progress, 14, 649–652.

    Article  CAS  Google Scholar 

  38. Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  39. Yugui, T., Yaoming, W., Shilei, Y., & Lianbin, Y. (2008). International Biodeterioration and Biodegradation, 62, 239–243.

    Article  Google Scholar 

  40. Prakash, O., Talat, M., Hasan, S. H., & Pandey, R. K. (2008). Bioresource Technology, 99, 7565–7572.

    Article  CAS  Google Scholar 

  41. Sangkharak, K. (2011). Waste Management and Research, 29, 1134–1144.

    Article  CAS  Google Scholar 

  42. Van Wyk, J. P. H., & Mohulatsi, M. (2003). Bioresource Technology, 86, 21–23.

    Article  Google Scholar 

  43. Van Wyk, J. P. H. (1999). Biomass and Bioenergy, 16, 239–242.

    Article  Google Scholar 

  44. Park, E. Y., Ikeda, Y., & Okuda, N. (2002). Biotechnology and Bioprocess Engineering, 7, 268–274.

    Article  CAS  Google Scholar 

  45. Marques, S., Alves, L., Roseiro, J. C., & Girio, F. M. (2008). Biomass and Bioenergy, 32, 400–406.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Ministry of Higher Education and Scientific Research, Tunisia, granted to the Laboratory of Biomass Valorisation and Protein Production in Eukaryotes (Centre of Biotechnology of Sfax, CBS, Sfax, Tunisia). We would like to express our gratitude to Pr. Hafedh Dhouib, responsible of the National Strains Collection of CBS, Tunisia, who gave us the yeast strain for fermentation. Special thanks are also due to Mr. Nabil Zouari, PHD student at ENIS Sfax, Tunisia, for his help in figure treatment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Guerfali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerfali, M., Saidi, A., Gargouri, A. et al. Enhanced Enzymatic Hydrolysis of Waste Paper for Ethanol Production Using Separate Saccharification and Fermentation. Appl Biochem Biotechnol 175, 25–42 (2015). https://doi.org/10.1007/s12010-014-1243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1243-1

Keywords

Navigation