Skip to main content
Log in

Effect of Different Carbon Sources on Morphology and Silver Accumulation in Cochliobolus lunatus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The morphology of filamentous fungi plays very important role in uptake of metabolites and enzyme production. A filamentous fungus may be fibrous, hyphae, pellets, clumps, etc. Cochliobolus lunatus is a fungus which has previously been reported for silver accumulation and nanoparticles formation. The present study investigated the role of various carbon sources on morphology, biochemical profile, silver accumulation, and biosynthesis of silver nanoparticles by fungal strain C. lunatus. In this investigation, effect of different carbon sources was studied on morphology of C. lunatus and its silver accumulating ability. As a result of different carbon sources like carboxymethyl cellulose (CMC), pectin, starch, agar, sucrose, and mannitol, the organism showed three kinds of morphologies like homogenous smooth branched clumps, tough short fibrous filaments, and tough pellets, as well as silver accumulating ability. Atomic absorption spectroscopy (AAS) studies showed maximum uptake of Ag+: 87.44 ± 0.23 and 82.57 ± 0.19 % in pectin- and CMC-grown biomass, respectively. The crystalline nature of silver nanoparticles (AgNPs) was confirmed by X-ray diffraction studies. Transmission electron microscopy (TEM) micrographs of silver nanoparticles confirmed size ranging from 5 to 38 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyatt, T. T., Golovina, E. A., Leeuwen, R., Hallsworth, J. E., Wösten, H. A. B., & Dijksterhuis, J. (2015). A decrease in bulk water and mannitol and accumulation of trehalose and trehalose‐based oligosaccharides define a two‐stage maturation process towards extreme stress resistance in ascospores of Neosartorya fischeri (Aspergillus fischeri). Environmental Microbiology, 17, 383–394.

    Article  CAS  Google Scholar 

  2. Zhang, H., Li, Q., Wang, H., Sun, D., Lu, Y., & He, N. (2007). Accumulation of silver(I) ion and diamine silver complex by Aeromonas SH10 biomass. Applied Biochemistry and Biotechnology, 143, 54–62.

    Article  CAS  Google Scholar 

  3. Merroun, M. L., BenOmar, N., Alonso, E., Arias, J. M., & Gonzalez-Munoz, M. T. (2001). Silver sorption to Myxococcus xanthus biomass. Geomicrobiology, 18, 183–192.

    Article  CAS  Google Scholar 

  4. Dias, M. A., Lacerda, I. C. A., Pimentel, P. F., DeCastro, H. F., & Rosa, C. A. (2002). Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Letters in Applied Microbiology, 34, 46–50.

    Article  CAS  Google Scholar 

  5. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajaykumar, P. V., Alam, M., Sastry, M., & Kumar, R. (2001). Bioreduction of AuCl(4)(−) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles. Angewandte Chemie International Edition, 40, 3585–3588.

    Article  CAS  Google Scholar 

  6. Pighi, L., Pumpel, T., & Schinner, F. (1989). Selective accumulation of silver by fungi. Biotechnology Letters, 11, 275–280.

    Article  CAS  Google Scholar 

  7. Chen, J. C., Lin, Z. H., & Ma, X. X. (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Letters in Applied Microbiology, 37, 105–108.

    Article  CAS  Google Scholar 

  8. Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surface B, 28, 313–318.

    Article  CAS  Google Scholar 

  9. Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surface B, 47, 160–164.

    Article  CAS  Google Scholar 

  10. Vigneshwaran, N., Kathe, A. A., Varadrajan, P. V., Nachane, R. P., & Balasubramanya, R. H. (2006). Biomimetics of silver nanoparticles by white rot fungus Phaenerochaete chrysosporium. Colloids and Surface B, 53, 55–59.

    Article  CAS  Google Scholar 

  11. Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Material Letters, 61, 1413–1418.

    Article  CAS  Google Scholar 

  12. Ingle, A., Rai, M., Gade, A., & Bawaskar, M. (2008). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal Nanoparticles Research, 11, 2079–2085.

    Article  Google Scholar 

  13. Vitas, M., Smith, K., Rozman, D., & Komel, R. (1994). 1 lfl-Hydroxysteroid dehydrogenase activity in progesterone biotransformation by the filamentous fungus Cochliobolus lunatus. Journal of Steroid Biochemistry and Molecular Biology, 49, 87–92.

    Article  CAS  Google Scholar 

  14. Salunkhe, R. B., Patil, S. V., Salunke, B. K., Patil, C. D., & Sonawane, A. M. (2011). Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 165(1), 221–234.

    Article  CAS  Google Scholar 

  15. Salunkhe, R. B., Patil, S. V., Patil, C. D., & Salunke, B. K. (2011). Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitology Research, 109(3), 823–831.

    Article  Google Scholar 

  16. Elamayerhi, H., Scharer, J. M., & Moo-Young, M. (1973). Effects of polymer additives on fermentation parameters in a culture of A. niger. Biotechnology Bioengineering, 15, 845–859.

    Article  Google Scholar 

  17. Yang, W., Hartwieg, E. A., Fang, A., & Demain, A. L. (2003). Effects of carboxymethylcellulose and carboxypolymethylene on morphology of Aspergillus fumigatus NRRL 2346 and fumagillin production. Current Microbiology, 46, 24–27.

    Article  CAS  Google Scholar 

  18. Xia, X., & Xie, Z. (2001). Software package for data analysis in molecular biology and evolution. The Journal of Heredity, 92, 371–373.

    Article  CAS  Google Scholar 

  19. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  20. Cray, J. A., Stevenson, A., Ball, P., Bankar, S. B., Eleutherio, E. C. A., Ezeji, T. C., Singhal, R. S., Thevelein, J. M., Timson, D. J., & Hallsworth, J. E. (2015). Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Current Opinion in Biotechnology, 33, 228–259.

    Article  CAS  Google Scholar 

  21. Cray, J. A., Houghton, J. D. R., Cooke, L. R., & Hallsworth, J. E. (2015). A simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi. Biological Control, 81, 93–100.

    Article  Google Scholar 

  22. Morin, M., & Ward, O. P. (1989). Investigation of cell wall composition of different mycelia forms of Rihizpus arrhizus. Mycological Research, 93(4), 524–528.

    Article  Google Scholar 

  23. Dubois, M., Gilles, H. Y., Rebers, P., & Smith, F. (1956). The carbohydrates of the Gramineae. A quantitative study of the carbohydrates of wheat germ. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Lejeune, R., & Baron, G. V. (1995). Effect of agitation on growth and enzyme production of Trichoderma reesei in batch fermentation. Applied Microbiology and Biotechnology, 43, 249–258.

    Article  CAS  Google Scholar 

  26. Vecht-Lifshitz, S. E., Magdassi, S., & Braun, S. (1990). Pellet formation and cellular aggregation in Streptomyces tendae. Biotechnology and Bioengineering, 35, 890–896.

    Article  CAS  Google Scholar 

  27. Peberdy, J. F. (1994). Protein secretion in filamentous fungi—trying to understand a highly productive black box. Trends in Biotechnology, 12, 50–57.

    Article  CAS  Google Scholar 

  28. Punt, P. J., van Biezen, N., Conesa, A., Albers, A., Mangnus, J., & van den Hondel, C. (2002). Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology, 20(5), 200–206.

    Article  CAS  Google Scholar 

  29. Pluschkell, S., Hellmuth, K., & Rinas, U. (1996). Kinetics of glucose oxidase excretion by recombinant Aspergillus niger. Biotechnology and Bioengineering, 51, 215–220.

    Article  Google Scholar 

  30. Juge, N., Svensson, B., & Williamson, G. (1998). Secretion, purification, and characterization of barley-amylase produced by heterologous gene expression in Aspergillus niger. Applied Microbiology and Biotechnology, 49, 385–392.

    Article  CAS  Google Scholar 

  31. Thomas, P., & Schinner, F. (1986). Silver tolerance and silver accumulation of microorganisms from soil materials of silver mine. Applied Microbiology and Biotechnology, 24, 244–247.

    Google Scholar 

  32. Gonzalez-Munoz, M. T., Merroun, M. L., BenOmar, N., & Arias, J. M. (1997). Biosorption of uranium by Myxococcus xanthus. International Biodeterioration & Biodegradation, 40, 107–114.

    Article  CAS  Google Scholar 

  33. BenOmar, N., Merroun, M. L., Arias, J. M., & Gonzalez-Munoz, M. T. (1997). Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere, 35, 2277–2283.

    Article  CAS  Google Scholar 

  34. Omar, N. B., Merroun, M.L., Penalver, J. M. A., Munoz, M.T.G. (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere, 35, 2277–2283.

  35. Merroun, M. L., BenOmar, N., Gonzalez-Munoz, M. T., & Arias, J. M. (1998). Myxococcus xanthus biomass as biosorbent for lead. Journal of Applied Microbiology, 84, 63–67.

    Article  CAS  Google Scholar 

  36. Mitard, A., & Riba, J. P. (1988). Morphology and growth of Aspergillus niger ATCC 26036 cultivated at several shear rates. Biotechnology and Bioengineering, 32, 835–840.

    Article  CAS  Google Scholar 

  37. Elamayerhi, H., & Scharer, J. M. (1973). Physiological studies on Aspergillus niger fermentation with polymer additives. Journal of General and Applied Microbiology, 76, 277–282.

    Article  Google Scholar 

  38. Elamayerhi, H. (1975). Mechanisms of pellet formation of Aspergillus niger with additives. Journal of Fermentation Technology, 53, 722–729.

    Google Scholar 

  39. Jones, P., Moore, D., & Trinci, A. P. J. (1988). Effect of Junlon and Hostacerin on the electrokinetic properties of fungal spores. Journal of General Microbiology, 134, 235–256.

    CAS  Google Scholar 

  40. Jones, P., Shahab, B. A., Trinci, A. P. J., & Moore, D. (1988). Effect of polymer additives, notably Junlon and Hostacerin, on growth of some basidiomycetes in submerged culture. Transactions of British Mycological Society, 90, 577–583.

    Article  CAS  Google Scholar 

  41. Patil, R. H., Patil, S. V., Patil, U. K., Bhat, J. A., Rajput, J., & Chaudhry, R. (2008). Biotransformation of Rifamycin B to Rifamycin S with free and immobilized cells of C. lunata. Journal of Pure and Applied Microbiology, 2(1), 111–114.

    Google Scholar 

  42. Slavica, B., Konstantinovic, S. S., Veljkovic, V. B., Savic, D. S., Lazic, M. L., & Gojgic-Cvijovic, G. (2008). Impact of carboxymethylcellulose on morphology and antibiotic production by Streptomyces hygroscopicus. Current Microbiology, 57, 8–11.

    Article  Google Scholar 

  43. Metz, B., & Kossen, N. W. F. (1977). The growth of molds in the form of pellets—a literature review. Biotechnology and Bioengineering, 19, 781–799.

    Article  CAS  Google Scholar 

  44. Nakajima, A., Horikoshi, T., & Sakaguchi, T. (1981). Studies on the accumulation of heavy metal elements in biological systems. Journal of Applied Microbiology and Biotechnology, 12, 76–83.

    Article  CAS  Google Scholar 

  45. Bitton, G., & Freihofer, V. (1978). Influence of extracellular parasites on toxicity of copper and cadmium toward Klebsiella aerogenes. Microbial Ecology, 4, 119–125.

    Article  CAS  Google Scholar 

  46. Camici, L., Sermonti, G., & Chain, E. B. (1952). Observations on Penicillium chrysogenum in submerged culture. 1. Mycelial growth and autolysis. Bulletin of World Health Organization, 6, 265–276.

    CAS  Google Scholar 

  47. Gole, A., Dash, C., Ramachandran, V., Sainkar, S. R., Mandale, A. B., Rao, M., & Sastry, M. (2001). Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir, 17, 1674–1679.

    Article  CAS  Google Scholar 

  48. Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., & Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B, 68, 88–92.

    Article  CAS  Google Scholar 

  49. Naik, R. R., Sarah, J., Stringer, S. J., Agarwal, G., Jones, S. E., & Stone, M. O. (2002). Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, 1, 169–172.

    Article  CAS  Google Scholar 

  50. Lloyd, J. R. (2003). Microbial reduction of metals and radionuclides. FEMS Microbiology Reviews, 27, 411–425.

    Article  CAS  Google Scholar 

  51. Medentsev, A. G., & Alimenko, V. K. (1998). Naphthoquinone metabolites of the fungi. Phytochemistry, 47, 935–959.

    Article  CAS  Google Scholar 

  52. Duran, N., Teixeira, M. F. S., De Conti, R., & Esposito, E. (2002). Ecological-friendly pigments from fungi. Critical Reviewes in Food Science and Nutrition, 42, 53–66.

    Article  CAS  Google Scholar 

  53. Bell, A. A., Wheeler, M. H., Liu, J., Stipanovic, R. D., Puckhaber, L. S., & Orta, H. (2003). United States Department of Agriculture-Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp. vasinfectum: potential targets for disease control. Pest Management Science, 59, 736–747.

    Article  CAS  Google Scholar 

  54. Baker, R. A., & Tatum, J. H. (1998). Novel anthraquinones from stationary cultures of Fusarium oxysporum. Journal of Fermentation and Bioengineering, 85, 359–361.

    Article  CAS  Google Scholar 

  55. Newman, D. K., & Kolter, R. (2000). A role for excreted quinones in extracellular electron transfer. Nature, 405, 94–97.

    Article  CAS  Google Scholar 

  56. Kathiresan, K., Manivannan, S., Nabeel, M. A., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71, 133–137.

    Article  CAS  Google Scholar 

  57. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Applied Environmental Microbiology, 27(6), 1712–1720.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are also thankful to UGC-SAP and DST-FIST for providing financial support to the department.

Conflict of Interest

All authors declared that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 217 KB)

High Resolution Image (TIFF 1.44 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salunkhe, R.B., Borase, H.P., Patil, C.D. et al. Effect of Different Carbon Sources on Morphology and Silver Accumulation in Cochliobolus lunatus . Appl Biochem Biotechnol 177, 1409–1423 (2015). https://doi.org/10.1007/s12010-015-1822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1822-9

Keywords

Navigation