Skip to main content

Advertisement

Log in

Increased Carbazole Alkaloid Accumulation in Clausena harmandiana Callus Culture by Treatments of Biocontrol Agent, Trichoderma harzianum and Bacillus subtilis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Clausena harmandiana (Pierre) Guillaumin is the Thai medicinal plant that possessed several pharmacological activities. The main active constituents of this plant are the carbazole alkaloids, isolated from wild plants. However, the in vitro culture for production of carbazole alkaloids from this plant has never been reported. Therefore, we aimed to develop callus culture of C. harmandiana elicited with two biotic elicitors, Trichoderma harzianum and Bacillus subtilis, as a sustainable source of carbazole alkaloids. The callus treated with living B. subtilis (BL) at 0.1 and 1% (v/v) for 3 days accumulated 5-fold increased level of clausine K. The highest level reached 309.37 ± 34.84 μg/g DW. This treatment also showed a significant increase in both total phenolic content and antioxidant capacity, which support the optimum usage of this elicitor. Moreover, only callus treated with 1% (v/v) Trichoderma culture filtrate (CF) showed a significant increase in the total phenolic contents and antioxidant capacity. The correlation analysis also revealed the significant correlation between antioxidant capacity and total phenolic level, total flavonoids, and clausine K but not 7-methoxymukonal. The results from our study suggested the use of C. harmandiana callus with the Bacillus elicitors for high-level production of clausine K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang, L., Feng, Z.-L., Wang, Y.-T., & Lin, L.-G. (2017). Anticancer carbazole alkaloids and coumarins from Clausena plants: a review. Chinese Journal of Natural Medicines, 15(12), 881–888.

    Article  PubMed  Google Scholar 

  2. Greger, H. (2017). Phytocarbazoles: alkaloids with great structural diversity and pronounced biological activities. Phytochemistry Reviews, 16(6), 1095–1153.

    Article  CAS  Google Scholar 

  3. Yenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M., & Thebtaranonth, Y. (2000). Coumarins and carbazoles with antiplasmodial activity from Clausena harmandiana. Planta Medica, 66(03), 277–279.

    Article  CAS  PubMed  Google Scholar 

  4. Chaichantipyuth, C., Pummangura, S., Naowsaran, K., Thanyavuthi, D., Anderson, J. E., & McLaughlin, J. L. (1988). Two new bioactive carbazole alkaloids from the root bark of Clausena harmandiana. Journal of Natural Products, 51(6), 1285–1288.

    Article  CAS  PubMed  Google Scholar 

  5. Thongthoom, T., Songsiang, U., Phaosiri, C., & Yenjai, C. (2010). Biological activity of chemical constituents from Clausena harmandiana. Archives of Pharmacal Research, 33(5), 675–680.

    Article  CAS  PubMed  Google Scholar 

  6. Songsiang, U., Thongthoom, T., Boonyarat, C., & Yenjai, C. (2011). Claurailas a−d, cytotoxic carbazole alkaloids from the roots of Clausena harmandiana. Journal of Natural Products, 74(2), 208–212.

    Article  CAS  PubMed  Google Scholar 

  7. Maneerat, W., Phakhodee, W., Ritthiwigrom, T., Cheenpracha, S., Promgool, T., Yossathera, K., Deachathai, S., & Laphookhieo, S. (2012). Antibacterial carbazole alkaloids from Clausena harmandiana twigs. Fitoterapia, 83(6), 1110–1114.

    Article  CAS  PubMed  Google Scholar 

  8. Sriphana, U., Thongsri, Y., Prariyachatigul, C., Pakawatchai, C., & Yenjai, C. (2013). Clauraila E from the roots of Clausena harmandiana and antifungal activity against Pythium insidiosum. Archives of Pharmacal Research, 36(9), 1078–1083.

    Article  CAS  PubMed  Google Scholar 

  9. Songsiang, U., Thongthoom, T., Zeekpudsa, P., Kukongviriyapan, V., Boonyarat, C., Wangboonskul, J., & Yenjai, C. (2012). Antioxidant activity and cytotoxicity against cholangiocarcinoma of carbazoles and coumarins from Clausena harmandiana. Science-Asia, 38(1), 75–81.

    Article  CAS  Google Scholar 

  10. Sunthitikawinsakul, A., Kongkathip, N., Kongkathip, B., Phonnakhu, S., Daly, J. W., Spande, T. F., Nimit, Y., & Rochanaruangrai, S. (2003). Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities. Planta Medica, 69(2), 155–157.

    Article  CAS  PubMed  Google Scholar 

  11. Xia, H.-M., Ou Yang, G.-Q., Li, C.-J., Yang, J.-Z., Ma, J., Zhang, D., Li, Y., Li, L., & Zhang, D.-M. (2015). Clauemarazoles A–G, seven carbazole alkaloids from the stems of Clausena emarginata. Fitoterapia, 103, 83–89.

    Article  CAS  PubMed  Google Scholar 

  12. Kongkathip, B., Kongkathip, N., Sunthitikawinsakul, A., Napaswat, C., & Yoosook, C. (2005). Anti-HIV-1 constituents from Clausena excavata: part II. Carbazoles and a pyranocoumarin. Phytotherapy Research, 19(8), 728–731.

    Article  CAS  PubMed  Google Scholar 

  13. Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: a historical perspective. Plant Science, 161(5), 839–851.

    Article  CAS  Google Scholar 

  14. Ramachandra Rao, S., & Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153.

    Article  CAS  Google Scholar 

  15. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333.

    Article  CAS  PubMed  Google Scholar 

  16. Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1(1), 13–25.

    Article  CAS  Google Scholar 

  17. Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48(1), 21–43.

    Article  CAS  PubMed  Google Scholar 

  18. Fira, D., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44–55.

    Article  CAS  PubMed  Google Scholar 

  19. Ramezani, A., Haddad, R., Sedaghati, B., & Jafari, D. (2018). Effects of fungal extracts on vinblastine and vincristine production and their biosynthesis pathway genes in Catharanthus roseus. South African Journal of Botany, 119, 163–171.

    Article  CAS  Google Scholar 

  20. Verma, P., Khan, S. A., Mathur, A. K., Shanker, K., & Kalra, A. (2014). Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell, Tissue and Organ Culture (PCTOC), 118(2), 257–268.

    Article  CAS  Google Scholar 

  21. Namdeo, A., Patil, S., & Fulzele, D. P. (2008). Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnology Progress, 18, 159–162.

    Article  Google Scholar 

  22. Verma, P., Khan, S. A., Mathur, A. K., Ghosh, S., Shanker, K., & Kalra, A. (2014). Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma, 251(6), 1359–1371.

    Article  CAS  PubMed  Google Scholar 

  23. Orlita, A., Sidwa-Gorycka, M., Malinski, E., Czerwicka, M., Kumirska, J., Golebiowski, M., Lojkowska, E., & Stepnowski, P. (2008). Effective biotic elicitation of Ruta graveolens L. shoot cultures by lysates from Pectobacterium atrosepticum and Bacillus sp. Biotechnology Letters, 30(3), 541–545.

    Article  CAS  PubMed  Google Scholar 

  24. Smetanska, I. (2008). In U. Stahl, U. E. B. Donalies, & E. Nevoigt (Eds.), Food biotechnology (pp. 187–228). Berlin: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  25. Daodee, S., Wangboonskul, J., Yenjai, C., Boonyarat, C., & Monthakantirat, O. (2012). Determination of five carbazole alkaloids from the root of Clausena harmandiana by high performance liquid chromatography. Isan Journal of Pharmaceutical Sciences, 8, 94–100.

    Google Scholar 

  26. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

    Article  CAS  Google Scholar 

  27. Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875–877.

    Article  CAS  PubMed  Google Scholar 

  28. Chang, C.-C., Yang, M.-H., Wen, H.-M. and Chern, J.-C. (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182.

  29. Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949.

    Article  Google Scholar 

  30. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30.

    Article  CAS  Google Scholar 

  31. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70–76.

    Article  CAS  PubMed  Google Scholar 

  32. Harborne, J. B. (1984). In J. B. Harborne (Ed.), Phytochemical methods: a guide to modern techniques of plant analysis (pp. 37–99). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  33. Chang, X., Ye, Y., Pan, J., Lin, Z., Qiu, J., Guo, X., & Lu, Y. (2018). Comparative assessment of phytochemical profiles and antioxidant activities in selected five varieties of wampee (Clausena lansium) fruits. International Journal of Food Science & Technology, 53(12), 2680–2686.

    Article  CAS  Google Scholar 

  34. Deng, H.-D., Cai, C.-H., Liu, S., Zeng, Y.-B., Mei, W.-L., He, F., Hua, M., Dai, H.-F., & Li, S.-P. (2016). A new monoterpenoid and a new flavonoid glycoside from the peels of Clausena lansium. Natural Product Communications, 11(5), 573–575.

    Article  PubMed  Google Scholar 

  35. Seo, C., Ahn, E.-K., Kang, J.-S., Lee, J.-H., Oh, J. S., & Hong, S. S. (2017). Excavasides A and B, two new flavonoid glycosides from Clausena excavata Burm. f. (Rutaceae). Phytochemistry Letters, 20, 93–97.

    Article  CAS  Google Scholar 

  36. Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159.

    Article  Google Scholar 

Download references

Funding

This work was supported by the funding from The Thailand Research Fund (IRN61W0005) and the financial support from the scholarship under the Postdoctoral Training Program from the Research Affairs and Graduate School, Khon Kaen University, Thailand (Grant No. 58439-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waraporn Putalun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonsnongcheep, P., Daodee, S., Kitisripanya, T. et al. Increased Carbazole Alkaloid Accumulation in Clausena harmandiana Callus Culture by Treatments of Biocontrol Agent, Trichoderma harzianum and Bacillus subtilis. Appl Biochem Biotechnol 189, 871–883 (2019). https://doi.org/10.1007/s12010-019-03037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03037-7

Keywords

Navigation