Skip to main content
Log in

Spectroscopic Evaluation of DNA–Borate Interactions

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

We describe the binding characteristics of two natural borates (colemanite and ulexite) to calf thymus DNA by UV–vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and a competitive DNA binding assay. Our results suggest that colemanite and ulexite interact with calf thymus DNA under a non-intercalative mode of binding and do not alter the secondary structure of the DNA helix. The FT-IR spectroscopy results indicate that the two borates might interact with DNA through sugar-phosphate backbone binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

Col:

Colemanite

CT-DNA:

Calf thymus DNA

FT-IR:

Fourier transform infrared

Ule:

Ulexite

UV–vis:

Ultraviolet–visible

References

  1. Davis SM, Drake KD, Maier KJ (2002) Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere 48:615–620

    Article  CAS  PubMed  Google Scholar 

  2. Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biofactors 3:229–239

    CAS  PubMed  Google Scholar 

  3. Pandey N, Gupta B (2013) The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J Trace Elem Med Biol 27:58–64

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen FH (1994) Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspect 102(Suppl 7):59–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nielsen FH, Hunt CD, Mullen LM, Hunt JR (1987) Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J 1:394–397

    CAS  PubMed  Google Scholar 

  6. Ince S, Kucukkurt I, Cigerci IH, Fatih Fidan A, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24:161–164

    Article  CAS  PubMed  Google Scholar 

  7. Turkez H (2008) Effects of boric acid and borax on titanium dioxide genotoxicity. J Appl Toxicol 28:658–664

    Article  CAS  PubMed  Google Scholar 

  8. Turkez H, Tatar A, Hacimuftuoglu A, Ozdemir E (2010) Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim Pol 57:95–97

    CAS  PubMed  Google Scholar 

  9. Türkez H, Geyikoğlu F, Tatar A, Keleş S, Ozkan A (2007) Effects of some boron compounds on peripheral human blood. Z Naturforsch C 62:889–896

    Article  PubMed  Google Scholar 

  10. Rodríguez-Pulido A, Aicart E, Llorca O, Junquera E (2008) Compaction process of calf thymus DNA by mixed cationic-zwitterionic liposomes: a physicochemical study. J Phys Chem B 112:2187–2197

    Article  PubMed  Google Scholar 

  11. Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M (2011) DNA binding, prominent DNA cleavage and efficient anticancer activities of tris(diimine)iron(II) complexes. Dalton Trans 40:3524–3536

    Article  CAS  PubMed  Google Scholar 

  12. Cetin B, Unal HI, Erol O (2012) The negative and positive electrorheological behavior and vibration damping characteristics of colemanite and polyindene/colemanite conducting composite. Smart Mater Struct 21:125011

    Article  Google Scholar 

  13. Ulexite (n.d.) ChemicalBook Inc.http://www.chemicalbook.com/ProductChemicalPropertiesCB71074735_EN.htm. Accessed 04 May 2015

  14. Chen LM, Liu J, Chen JC, Tan CP, Shi S, Zheng KC, Ji LN (2008) Synthesis, characterization, DNA-binding and spectral properties of complexes [Ru(L)4(dppz)]2+ (L=Im and MeIm). J Inorg Biochem 102:330–341

    Article  CAS  PubMed  Google Scholar 

  15. Strand SP, Danielsen S, Christensen BE, Vårum KM (2005) Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules 6:3357–3366

    Article  CAS  PubMed  Google Scholar 

  16. F. Menges “Spekwin32 - optical spectroscopy software”, Version 1.71.6.1, 2013, http://www.effemm2.de/spekwin/

  17. Wu SS, Yuan WB, Wang HY, Zhang Q, Liu M, Yu KB (2008) Synthesis, crystal structure and interaction with DNA and HSA of (N, N’-dibenzylethane-1,2-diamine) transition metal complexes. J Inorg Biochem 102:2026–2034

    Article  CAS  PubMed  Google Scholar 

  18. Markovitsi D (2009) Interaction of UV radiation with DNA helices. Pure Appl Chem 81:1635–1644

    Article  CAS  Google Scholar 

  19. Sirajuddin M, Ali S, Badshah A (2013) Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B 124:1–19

    Article  CAS  PubMed  Google Scholar 

  20. Eshkourfu R, Čobeljić B, Vujčić M, Turel I, Pevec A, Sepčić K, Zec M, Radulović S, Srdić-Radić T, Mitić D, Andjelković K, Sladić D (2011) Synthesis, characterization, cytotoxic activity and DNA binding properties of the novel dinuclear cobalt(III) complex with the condensation product of 2-acetylpyridine and malonic acid dihydrazide. J Inorg Biochem 105:1196–1203

    Article  CAS  PubMed  Google Scholar 

  21. Ting CY, Hsu CT, Hsu HT, Su JS, Chen TY, Tarn WY, Kuo YH, Whang-Peng J, Liu LF, Hwang J (2013) Isodiospyrin as a novel human DNA topoisomerase I inhibitor. Biochem Pharmacol 66:1981–1991

    Article  Google Scholar 

  22. Ju CC, Zhang AG, Yuan CL, Zhao XL, Wang KZ (2011) The interesting DNA-binding properties of three novel dinuclear Ru(II) complexes with varied lengths of flexible bridges. J Inorg Biochem 105:435–443

    Article  CAS  PubMed  Google Scholar 

  23. Kelly JM, Tossi AB, McConnell DJ, OhUigin C (1985) A study of the interactions of some polypyridylruthenium (II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Res 13:6017–6034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  PubMed  Google Scholar 

  25. Kumar RS, Arunachalam S (2009) DNA binding and antimicrobial studies of polymer-copper(II) complexes containing 1,10-phenanthroline and L-phenylalanine ligands. Eur J Med Chem 44:1878–1883

    Article  CAS  PubMed  Google Scholar 

  26. Ivanov VF, Minchenkova LE, Schyolkina AK, Poletayer AI (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12:89–110

    Article  CAS  PubMed  Google Scholar 

  27. Kunwar A, Simon E, Singh U, Chittela RK, Sharma D, Sandur SK, Priyadarsini IK (2011) Interaction of a curcumin analogue dimethoxycurcumin with DNA. Chem Biol Drug Des 77:281–287

    Article  CAS  PubMed  Google Scholar 

  28. Jangir DK, Charak S, Mehrotra R, Kundu S (2011) FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA. J Photochem Photobiol B 105:143–148

    Article  CAS  PubMed  Google Scholar 

  29. Uma V, Elango M, Nair BU (2007) Copper(II) terpyridine complexes: effect of substituent on DNA binding and nuclease activity. Eur J Inorg Chem 22:3484–3490

    Article  Google Scholar 

  30. Mantsch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. A John Wiley & Sons, Inc., New York

    Google Scholar 

  31. Adali T, Bentaleb A, Elmarzugi N, Hamza AM (2013) PEG-calf thymus DNA interactions: conformational, morphological and spectroscopic thermal studies. Int J Biol Macromol 61:373–378

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal S, Jangir DK, Singh P, Mehrotra R (2014) Spectroscopic analysis of the interaction of lomustine with calf thymus DNA. J Photochem Photobiol B 130:281–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Turkish National Boron Research Institute (Ulusal Bor Araştırma Enstitüsü (BOREN), Ankara, Turkey) for financial support through Research Grant No. 2012.ç0356 and to E. Kalyoncu, A. D. Özkan, and R. T. Gursacli for their help and support in conducting the experiments described. A. Ozdemir is supported by TUBITAK BIDEB (2211) PhD fellowship. O.F. Sarioglu acknowledges TUBITAK BIDEB (2211-C) for National PhD Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Tekinay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, A., Sarioglu, O.F. & Tekinay, T. Spectroscopic Evaluation of DNA–Borate Interactions. Biol Trace Elem Res 168, 508–515 (2015). https://doi.org/10.1007/s12011-015-0369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0369-5

Keywords

Navigation