Skip to main content
Log in

The Reproductive Injury and Oxidative Testicular Toxicity Induced by Chlorpyrifos Can Be Restored by Zinc in Male Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

A Correction to this article was published on 08 May 2021

This article has been updated

Abstract

The current study aimed to evaluate the harmful effect of chlorpyrifos (CPF) on the reproductive functions and fertility in male rats and to assess the protective role of zinc (Zn) in improving the adverse effects of CPF on male fertility. Sixty mature male rats were divided into four groups: Group 1: The control group was orally administered with the corresponding dose of corn oil. Group 2 animals received chlorpyrifos (1 mg/kg, oral). Group 3 rats received oral zinc (25 mg/kg) daily. Group 4 animals received oral zinc treatment (25 mg/kg). CPF caused a significant decrease in the body and reproductive organs’ weights, sperm count, sperm motility percent, serum testosterone, FSH, and LH. The CPF-treated group showed a significant increase in dead sperm percent and sperm abnormalities. CPF induced a significant internucleosomal DNA fragmentation and marked histological alterations in the testes of treated male rats. Conversely, co-treatment with Zn improved the reproductive organs weights, sperm characteristics, internucleosomal DNA fragmentation, and histological alterations of the testes. In conclusion, CPF triggered significant detrimental effects on male reproductive organs and functions and the co-treatment with zinc partly alleviate the injurious effects of CPF on male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data will be available at the reasonable request

Change history

References

  1. Khalaf AA, Ibrahim MA, Tohamy AF et al (2017) Protective effect of vitazinc on chlorsan induced oxidative stress, genotoxicity and histopathological changes in testicular tissues of male rats. Int J Pharmacol 13(1):22–32

    CAS  Google Scholar 

  2. Morgan AM, Ibrahim MA, Noshy PA (2017) Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochem Biophys Res Commun 486(2):595–600

    CAS  PubMed  Google Scholar 

  3. Morgan A, Galal MK, Ogaly HA, Ibrahim MA, Abd-Elsalam RM, Noshy P (2017) Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats. Biomed Pharmacother 93:779–787

    CAS  PubMed  Google Scholar 

  4. Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32:147–156

    CAS  Google Scholar 

  5. Fosu-Mensah BY, Okoffo ED, Darko G, Gordon C (2016) Assessment of organochlorine pesticide residues in soils and drinking water sources from cocoa farms in Ghana. Springerplus. 5(1):869

    PubMed  PubMed Central  Google Scholar 

  6. Zhou Y, Wang Z, Xia M et al (2017) Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: implications for children exposed to environmental levels of BPA. Environ Pollut 229:40e48

    Google Scholar 

  7. Bala R, Dhingra S, Kumar M, Bansal K, Mittal S, Sharma RK, Wangoo N (2017) Detection of organophosphorus pesticide–Malathion in environmental samples using peptide and aptamer based nanoprobes. Chem Eng J 311:111–116

    CAS  Google Scholar 

  8. Abdel Aziz RL, Abdel-Wahab A, Abo El-Ela FI, Hassan NEY et al (2018) Dose-dependent ameliorative effects of quercetin and l-carnitine against atrazine-induced reproductive toxicity in adult male Albino rats. Biomed Pharmacother 102:855–864

    CAS  PubMed  Google Scholar 

  9. Colovic MB, Lazarevic-Pašti TD et al (2015) Toxic effects of chlorpyrifos and its metabolites on some physiologically important enzymes: Atpases, cholinesterases, peroxidases. Chlorpyrifos: toxicological properties, uses and effects on human health and the environment, pp 87–140

  10. Nasr HM, El-Demerdash FM, El-Nagar WA (2016) Neuro and renal toxicity induced by chlorpyrifos and abamectin in rats. Environ Sci Pollut Res 23:1852–1859

    CAS  Google Scholar 

  11. Assayed ME, Khalaf AA, Salem HA (2010) Protective effects of garlic extract and vitamin C against in vivo cypermethrin-induced teratogenic effects in rat offspring. Food Chem Toxicol 48:3153–3158

    CAS  PubMed  Google Scholar 

  12. Narra MR, Rajender K, Reddy RR, Murty US, Begum G (2017) Insecticides induced stress response and recuperation in fish: Biomarkers in blood and tissues related to oxidative damage. Chemosphere. 168:350–357. https://doi.org/10.1016/j.chemosphere.2016.10.066

    Article  CAS  PubMed  Google Scholar 

  13. Meeker JD, Ryan L, Barr DB, Hauser R (2006) Exposure to non-persistent insecticides and male reproductive hormones. Epidemiology 17:61–68

    PubMed  Google Scholar 

  14. Sai L, Li X, Liu Y et al (2014) Effects of chlorpyrifos on reproductive toxicology of male rats. Environ Toxicol 9:1083–1088

    Google Scholar 

  15. Alaa-Eldin EA, El-Shafei DA, Abouhashem NS (2017) Individual and combined effect of chlorpyrifos and cypermethrin on reproductive system of adult male albino rats. Environ Sci Pollut Res 24:1532–1543

    CAS  Google Scholar 

  16. Tapadar S, Fathi S, Raji I, Omesiete W, Kornacki JR, Mwakwari SC, Miyata M, Mitsutake K, Li JD, Mrksich M, Oyelere AK (2015) A structure-activity relationship of non-peptide macrocyclic histone deacetylase inhibitors and their anti-proliferative and anti-inflammatory activities. Bioorg Med Chem 23(24):7543–7564

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Altin FH, Kurt BO, Tanidir IC, Kaya M, Yildiz O, Kahraman MZ, Celebi SB, Ozturk E, Ozdemir S (2018) Comparison of trace element levels after cardiopulmonary bypass between cyanotic and acyanotic patients. Cardiol Young 28(5):632–638

    PubMed  Google Scholar 

  18. Fatima T, Haji Abdul Rahim ZB, Lin CW, Qamar Z (2016) Zinc: a precious trace element for oral health care? J Pak Med Assoc 66(8):1019–1023

    PubMed  Google Scholar 

  19. Peng P, Deng D, Chen S, Li C, Luo J, Romeo A, Li T, Tang X, Fang R (2020) The effects of dietary porous zinc oxide supplementation on growth performance, inflammatory cytokines and tight junction’s gene expression in early-weaned piglets. J Nutr Sci Vitaminol (Tokyo) 66(4):311–318

    CAS  Google Scholar 

  20. Najafi S, Moshtaghie AA, Noori A (2016) Protective effects of long term administration of zinc on bone metabolism parameters in male Wistar rats treated with cadmium. Zahedan J Res Med Sci 18:4290

    Google Scholar 

  21. Behrens B, Schlosser L (1957) Beitrag zur Bestimmung der LD50 und der Berechnung ihrer Fehlerbreite [Determination of LD50 and calculation of the error range]. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 230(1):59–72

    CAS  PubMed  Google Scholar 

  22. Khalaf AA, Ahmed WM, Moselhy WA, Abdel-Halim BR, Ibrahim MA (2019) Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 38(4):398–408

    CAS  PubMed  Google Scholar 

  23. Yokoi K, Uthus EO, Nielsen FN (2003) Nickel deficiency diminishes sperm quantity and movement in rats. Biol Trace Elem Res 93:141–153

    CAS  PubMed  Google Scholar 

  24. Sonmez M, Turk G, Yuce A (2005) The effect of ascorbic acid supplementation on sperm quality, lipid peroxidation and testosterone levels of male Wistar rats. Theriogenology 63:2063–2072

    PubMed  Google Scholar 

  25. Bearden HJ, Fuquay J (1980) Applied animal reproduction. Reston Publishing Company. Inc, Reston, pp 158–160

    Google Scholar 

  26. Evans G, Maxwell WMC (1987) Salamon’s artificial insemination of sheep and goats. Butterworths, Sidney, pp 8–21 107-141

    Google Scholar 

  27. Ibrahim MA, Ibrahem MD (2020) Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clariasgariepinus). Environ Toxicol 35(2):300–308

    CAS  PubMed  Google Scholar 

  28. Ahmed WMS, Helmy NA, Ibrahim MA, Hassan HM, Zaki AR (2021 Jan) Premna odorata extract as a protective agent on neurotoxic effect of aluminum: neurochemical, molecular, and histopathological alterations. Environ Sci Pollut Res Int 28(2):2146–2157

    CAS  PubMed  Google Scholar 

  29. Coburn, IM, Kim, ED., Wheeler TM (1997) Testicular biopsy in male infertility evaluation. In: Lipshultz LI, Howards SS, editors. Infertility in male. 3rd ed. Chapt.12 St. Louis.CU: pp 219-248.

    Google Scholar 

  30. Muslim M, Ansari MS, Hasan F (2018) Non-target toxicity of synthetic insecticides on the biological performance and population growth of Bracon hebetor Say. Ecotoxicology. 27(7):1019–1031

    CAS  PubMed  Google Scholar 

  31. Dutta AP, Sahu CR (2013) Emblica officinalis Garten fruits extract ameliorates reproductive injury and oxidative testicular toxicity induced by chlorpyrifos in male rats. Springerplus 2(1):541

    PubMed  PubMed Central  Google Scholar 

  32. Oda SS, El-Maddawy ZK (2012) Protective effect of vitamin E and selenium combination on deltamethrin-induced reproductive toxicityin male rats. Exp Toxicol Pathol 64(7-8):813–819

    CAS  PubMed  Google Scholar 

  33. Alabi OA, Olusola Ogunwenmo K et al (2014) Genotoxic potential of pirimiphos-methyl organophosphate pesticide using the mouse bone marrow erythrocyte micronucleus and the sperm morphology assay. J Environ Occup Sci 3(2):81–86

    Google Scholar 

  34. Konvalina JD, Trauth SE, Plummer MV (2018) Spermatogenesis and testicular cycle in rough greensnakes, Opheodrys aestivus, from Arkansas. J Herpetol 52(2):185–192

    Google Scholar 

  35. Holdcraft RW, Braun RE (2004) Hormonal regulation of spermatogenesis. Int J Androl 27:335–342

    CAS  PubMed  Google Scholar 

  36. Manassaram DM, Backer LC, Moll DM (2006) A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcome. Environ Health Perspect 114:320–327

    CAS  PubMed  Google Scholar 

  37. Rim K-T (2017) Reproductive toxic chemicals at work and efforts to protect workers’ health: a literature review. Saf Health Work 8(2):143–150

    PubMed  PubMed Central  Google Scholar 

  38. Maitra SK, Mitra A (2008) Testicular functions and serum titers of LH and testosterone in methyl parathion-fed roseringed parakeets. Ecotoxicol Environ Saf 71:236–244

    CAS  PubMed  Google Scholar 

  39. Adedara IA, Alake SE, Adeyemo MO, Farombi et al (2018) Taurine enhances spermatogenic function and antioxidant defense mechanisms in testes and epididymis of L-NAME-induced hypertensive rats, Biomed. Pharmacotheray 97:181–189

    CAS  Google Scholar 

  40. Teerds KJ, Huhtaniemi IT (2015) Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update 21(3):310–328

    CAS  PubMed  Google Scholar 

  41. Smith LB, Walker WH, O’Donnell L (2015) Hormonal regulation of spermatogenesis through Sertoli cells by androgens and estrogens. In: Griswold MD (ed) Sertoli cell biology. Elsevier, Waltham, pp 175–200

    Google Scholar 

  42. Gal A, Lin PC, Cacioppo JA, Hannon PR, Mahoney MM, Wolfe A, Fernandez-Valdivia R, Lydon JP, Elias CF, Ko C (2016) Loss of Fertility in the Absence of Progesterone Receptor Expression in Kisspeptin Neurons of Female Mice. PLoS One. 11(7):e0159534

    PubMed  PubMed Central  Google Scholar 

  43. Khokhar JY, Tvndale RF (2012) Rat brain CYP2B-enzymatie activation of chlorpyrifos to the axon mediates cholinergic neurotoxicity. Toxicol Sci 126:325–335

    CAS  PubMed  Google Scholar 

  44. Joshi CS, Mathur R, Gulati N (2007) Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rats. Toxicol Ind Health 23(7):439–444

    CAS  PubMed  Google Scholar 

  45. Silmen S, Saloua EF, Najoua FG (2014) Oxidative stress and cytotoxic potential of acetyl cholinesterase insecticide, malathion in reproductive toxicology of male adolescent mice after acute exposure. Iran. Basic Med Sci 17:522–530

    Google Scholar 

  46. Chargui I, Grissa I, Bensassi F, Hrira MY, Haouem S, Haouas Z, Bencheikh H (2012) Oxidative stress, biochemical and histological alterations in the liver and kidney of female rats exposed to low doses of deltamethrin (DM): a molecular assessment. Biomed Environ Sci 25:672–683

    CAS  PubMed  Google Scholar 

  47. El Bannal HA, Shalaby MA, Kamel GM et al (2016) Reproductive toxicity of deltamethrin in male rats and the protective role of vitamin E. Pharm Chem J 3(3):54–60

    Google Scholar 

  48. Khalaf AA, Zaki AR, Galal MK, Ogaly HA, Ibrahim MA, Hassan A (2017b) The potential protective effect of α-lipoic acid against nanocopper particle-induced hepatotoxicity in male rats. Hum Exp Toxicol 36(9):881–891

    CAS  PubMed  Google Scholar 

  49. Morsy EA, Hussien AM, Ibrahim MA, Farroh KY, Hassanen EI (2021) Cytotoxicity and genotoxicity of copper oxide nanoparticles in chickens. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02595-4

  50. Yong C, Guob J, Xua B et al (2006) Potential of chlorpyrifos and cypermethrin forming DNA adducts. Mutat Res 604:36–41

    Google Scholar 

  51. Gomez-Canela C, Prats E, Pina, et al. (2017) Assessment of chlorpyrifos toxic effects in zebrafish (Danio rerio) metabolism. Environ Pollut 220:1231–1243

    CAS  PubMed  Google Scholar 

  52. Uzun FG, Kalender S, Durak D, Demir F, Kalender Y (2009) Malathion-induced testicular toxicity in male rats and the protective effect of vitamins C and E. Food Chem Toxicol 47(8):1903–1908

    CAS  PubMed  Google Scholar 

  53. Tanvir EM, Afroz R, Chowdhury M, Gan SH, Karim N, Islam MN, Khalil MI (2016) A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum Exp Toxicol 35:991–1004

    CAS  PubMed  Google Scholar 

  54. Manjunatha B, Philip GH (2016) Reproductive toxicity of chlorpyrifos tested in zebrafish (Danio rerio) Histological and hormonal end points. Toxicol Ind Health 10:1808–1816

    Google Scholar 

  55. Roohani N, Hurrell R, Kelishadi R et al (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144–157

    PubMed  PubMed Central  Google Scholar 

  56. Fallah A, Mohammad- Hasani A, Hosseinzadeh A (2018) Zinc is an essential element for male fertility: a review of Zn roles in men’s health, germination, sperm quality, and fertilization. J Reprod Infertil 19(2):69–81

    PubMed  PubMed Central  Google Scholar 

  57. Barber SJ, Parker HM, McDaniel CD (2005) Broiler breeder semen quality as affected by trace minerals in vitro. Poult Sci 84(1):100–105

    CAS  PubMed  Google Scholar 

  58. Edorh AP, Tachev K, Hadou T et al (2003) Magnesium content in seminal fluid as an indicator of chronic prostatitis. Cell Mol Biol (Noisy-le-grand) 49:Online Pub:OL419-23

    Google Scholar 

  59. Tuerk MJ, Fazel N (2009) Zinc deficiency. Curr Opin Gastroenterol 25:136–143

    CAS  PubMed  Google Scholar 

  60. Chia SE, Ong CN, Chua LH, Ho LM, Tay SK (2000) Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters-between fertile and infertile men. J Androl 21(1):53–57

    CAS  PubMed  Google Scholar 

  61. Oyewopo A, Saolu LC, Osinubi AA et al (2010) The attenuating effect of zinc on propoxur induced oxidative stress impaired spermatogenesis and deranged steroidogenesis in wistar rat. J Med Sci 1(5):178–184

    Google Scholar 

  62. Ebisch IM, Thomas CM, Peters WH et al (2007) The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update 13(2):163–174

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors received funding from the Deanship of Scientific Research (DSR), King Khalid University, Abha, Saudi Arabia, under grant no. R.G.P.1/190/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa A. Ibrahim.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, A.A., Ogaly, H.A., Ibrahim, M.A. et al. The Reproductive Injury and Oxidative Testicular Toxicity Induced by Chlorpyrifos Can Be Restored by Zinc in Male Rats. Biol Trace Elem Res 200, 551–559 (2022). https://doi.org/10.1007/s12011-021-02704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02704-3

Keywords

Navigation