Skip to main content

Advertisement

Log in

Crosstalk Between the Aryl Hydrocarbon Receptor and Hypoxia on the Constitutive Expression of Cytochrome P4501A1 mRNA

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Endothelial cells are a target of halogenated aromatic hydrocarbon toxicity following aryl hydrocarbon receptor (AHR) activation. Further, evidence suggests that AHR has a physiological function in endothelial cells in the absence of exogenous ligands. Understanding these “normal” functions of AHR may help to reveal the mechanisms that contribute to the toxicity of xenobiotic ligands. Thus, this study focused on the crosstalk between hypoxia and AHR in the absence of exogenous ligands. Constitutive CYP1A1 mRNA was measured by real time PCR in human pulmonary microvascular endothelial cells exposed to hypoxia (1 or 2.5% O2), 25 nM AHR siRNA, 25 nM hypoxia-inducible factor (HIF)-2α siRNA, or their combinations. Hypoxia significantly induced known hypoxia-regulated genes, and this induction was highly attenuated by HIF-2α siRNA, suggesting that HIF-2α is a primary mediator of hypoxic responses in these cells. Hypoxia also significantly reduced CYP1A1 mRNA and this reduction was also attenuated by HIF-2α siRNA. As expected, AHR siRNA significantly reduced constitutive CYP1A1 mRNA. While the combination of hypoxia plus AHR siRNA reduced CYP1A1 mRNA more than either treatment alone, the reduction was less than additive, suggesting that hypoxia and AHR deficiency may share a common pathway in reducing CYP1A1 expression. Finally, hypoxia significantly reduced AHR mRNA and this reduction was completely prevented by HIF-2α siRNA. In conclusion, constitutive CYP1A1 mRNA expression is dependent on AHR and is reduced by hypoxia via a HIF-2α-dependent mechanism, which may be mediated by a HIF-2α-dependent reduction of AHR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen, H. S., & Perdew, G. H. (1994). Subunit composition of the heteromeric cytosolic aryl hydrocarbon receptor complex. The Journal of Biological Chemistry, 269, 27554–27558.

    PubMed  CAS  Google Scholar 

  2. Eskin, S. G., Turner, N. A., & McIntire, L. V. (2004). Endothelial cell cytochrome P450 1A1 and 1B1: Up-regulation by shear stress. Endothelium, 11, 1–10.

    Article  PubMed  CAS  Google Scholar 

  3. McMillan, B. J., & Bradfield, C. A. (2007). The aryl hydrocarbon receptor is activated by modified low-density lipoprotein. Proceedings of the National Academy of Sciences of the United States of America, 104, 1412–1417.

    Article  PubMed  CAS  Google Scholar 

  4. Sadek, C. M., & Allen-Hoffmann, B. L. (1994). Suspension-mediated induction of Hepa 1c1c7 Cyp1a-1 expression is dependent on the Ah receptor signal transduction pathway. The Journal of Biological Chemistry, 269, 31505–31509.

    PubMed  CAS  Google Scholar 

  5. Sadek, C. M., & Allen-Hoffmann, B. L. (1994). Cytochrome P450IA1 is rapidly induced in normal human keratinocytes in the absence of xenobiotics. The Journal of Biological Chemistry, 269, 16067–16074.

    PubMed  CAS  Google Scholar 

  6. Lahvis, G. P., Lindell, S. L., Thomas, R. S., McCuskey, R. S., Murphy, C., Glover, E., Bentz, M., Southard, J., & Bradfield, C. A. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 10442–10447.

    Article  PubMed  CAS  Google Scholar 

  7. Lund, A. K., Goens, M. B., Kanagy, N. L., & Walker, M. K. (2003). Cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice is correlated with elevated angiotensin II, endothelin-1 and mean arterial blood pressure. Toxicology and Applied Pharmacology, 193, 177–187.

    Article  PubMed  CAS  Google Scholar 

  8. Thackaberry, E. A., Gabaldon, D., Walker, M. K., & Smith, S. M. (2002). Aryl hydrocarbon receptor null mice exhibit cardiac hypertrophy and increased cardiac hypoxia-inducible factor 1-α in the absence of cardiac hypoxia. Cardiovascular Toxicology, 4, 263–273.

    Google Scholar 

  9. Vasquez, A., Atallah-Yunes, N., Smith, F. C., You, X., Chase, S. E., Silverstone, A. E., & Vikstrom, K. L. (2003). A role for the aryl hydrocarbon receptor in cardiac physiology and function as demonstrated by AhR knockout mice. Cardiovascular Toxicology, 3, 153–163.

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez-Salguero, P. M., Ward, J. M., Sundberg, J. P., & Gonzalez, F. J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Veterinary Pathology, 34, 605–614.

    Article  PubMed  CAS  Google Scholar 

  11. Wenger, R. H. (2002). Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB Journal, 16, 1151–1162.

    Article  PubMed  CAS  Google Scholar 

  12. Kewley, R. J., Whitelaw, M. L., & Chapman-Smith, A. (2004). The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. The International Journal of Biochemistry & Cell Biology, 36, 189–204.

    Article  CAS  Google Scholar 

  13. Chan, W. K., Yao, G., Gu, Y. Z., & Bradfield, C. A. (1999). Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. The Journal of Biological Chemistry, 274, 12115–12123.

    Article  PubMed  CAS  Google Scholar 

  14. Gradin, K., McGuire, J., Wenger, R. H., Kvietikova, I., Whitelaw, M. L., Toftgard, R, Tora, L., Gassmann, M., & Poellinger, L. (1996). Functional interference between hypoxia and dioxin signal transduction pathways: Competition for recruitment of the Arnt transcription factor. Molecular and Cellular Biology, 16, 5221–5231.

    PubMed  CAS  Google Scholar 

  15. Pollenz, R. S., Davarinos, N. A., & Shearer, T. P. (1999). Analysis of aryl hydrocarbon receptor-mediated signaling during physiological hypoxia reveals lack of competition for the aryl hydrocarbon nuclear translocator transcription factor. Molecular Pharmacology, 56, 1127–1137.

    PubMed  CAS  Google Scholar 

  16. Nie, M., Blankenship, A. L., & Giesy, J. P. (2001). Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Environmental Toxicology and Pharmacology, 10, 17–27.

    Article  PubMed  CAS  Google Scholar 

  17. Roblin, S., Okey, A. B., & Harper, P. A. (2004). AH receptor antagonist inhibits constitutive CYP1A1 and CYP1B1 expression in rat BP8 cells. Biochemical and Biophysical Research Communications, 317, 142–148.

    Article  PubMed  CAS  Google Scholar 

  18. Chiaro, C. R., Patel, R. D., Marcus, C. B., & Perdew, G. H. (2007). Evidence for an Ah receptor-mediated cytochrome P450 auto-regulatory pathway. Molecular Pharmacology. Published on-line: August 24, 2007; doi:10.1124/mol.107.038968.

  19. Fradette, C., & Du, S. P. (2004). Effect of hypoxia on cytochrome P450 activity and expression. Current Drug Metabolism, 5, 257–271.

    Article  PubMed  CAS  Google Scholar 

  20. Elvidge, G. P., Glenny, L., Appelhoff, R. J., Ratcliffe, P. J., Ragoussis, J., & Gleadle, J. M. (2006). Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1alpha, HIF-2alpha, and other pathways. The Journal of Biological Chemistry, 281, 15215–15226.

    Article  PubMed  CAS  Google Scholar 

  21. Song, J., Claget-Dame, M., Peterson, R. E., Hahn, M. E., Westler, W. M., Sicinski, R. R., & DeLuca, H. (2002). A ligand for the aryl hydrocarbon receptor isolated from lung. Proceedings of the National Academy of Sciences of the United States of America, 99, 14694–14699.

    Article  PubMed  CAS  Google Scholar 

  22. Hu, C. J., Sataur, A., Wang, L., Chen, H., & Simon, M. C. (2007). The N-terminal transactivation domain confers target gene specificity of hypoxia inducible factors HIF-1{alpha} and HIF-2{alpha}. Molecular Pharmacology Cell Published on-line: September 5, 2007; doi:10.1091/mbc.E06–05–0419 .

  23. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B., & Simon, M. C. (2003). Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Molecular and Cellular Biology, 23, 9361–9374.

    Article  PubMed  CAS  Google Scholar 

  24. Stegeman, J. J., Hahn, M. E., Weisbrod, R., Woodin, B. R., Joy, J. S., Najibi, S., & Cohen, R. A. (1995). Induction of cytochrome P4501A1 by aryl hydrocarbon receptor agonists in porcine aorta endothelial cells in culture and cytochrome P4501A1 activity in intact cells. Molecular Pharmacology, 47, 296–306.

    PubMed  CAS  Google Scholar 

  25. Ma, Q., Baldwin, K. T., Renzelli, A. J., McDaniel, A., & Dong, L. (2001). TCDD-inducible poly(ADP-ribose) polymerase: A novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochemical and Biophysical Research Communications, 289, 499–506.

    Article  PubMed  CAS  Google Scholar 

  26. Couroucli, X. I., Welty, S. E., Geske, R. S., & Moorthy, B. (2002). Regulation of pulmonary and hepatic cytochrome P4501A expression in the rat by hyperoxia: Implications for hyperoxic lung injury. Molecular Pharmacology, 61, 507–515.

    Article  PubMed  CAS  Google Scholar 

  27. McMillan, B. J., & Bradfield, C. A. (2007). The Aryl Hydrocarbon Receptor sans Xenobiotics: Endogenous Function in Genetic Model Systems. Molecular Pharmacology, 27, 487–498.

    Article  CAS  Google Scholar 

  28. Abdelrahim, M., Smith, R. III, & Safe, S. (2003). Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Molecular Pharmacology, 63, 1373–1381.

    Article  PubMed  CAS  Google Scholar 

  29. Akahoshi, E., Yoshimura, S., & Ishihara-Sugano, M. (2006). Over-expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: Neurotoxicology study. Environmental Health, 5, 24.

    Article  PubMed  CAS  Google Scholar 

  30. Fradette, C., Bleau, A. M., Pichette, V., Chauret, N., & Du, S. P. (2002). Hypoxia-induced down-regulation of CYP1A1/1A2 and up-regulation of CYP3A6 involves serum mediators. British Journal of Clinical Pharmacology, 137, 881–891.

    CAS  Google Scholar 

  31. Carriere, V., Dussaulx, E., Rousset, M., Zweibaum, A., & Cambier, D. (1998). Decreased expression of gamma-glutamyltranspeptidase in the intestinal cell line Caco-2 by inducers of cytochrome P450 1A1. Biochemical Pharmacology, 56, 817–823.

    Article  PubMed  CAS  Google Scholar 

  32. Fradette, C., Batonga, J., Teng, S., Piquette-Miller, M., & Du, S. P. (2007). Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver. Drug Metabolism and Disposition, 35, 765–771.

    Article  PubMed  CAS  Google Scholar 

  33. Jiang, W., Welty, S. E., Couroucli, X. I., Barrios, R., Kondraganti, S. R., Muthiah, K., Yu, L., Avery, S. E., & Moorthy, B. (2004). Disruption of the Ah receptor gene alters the susceptibility of mice to oxygen-mediated regulation of pulmonary and hepatic cytochromes P4501A expression and exacerbates hyperoxic lung injury. The Journal of Pharmacology and Experimental Therapeutics, 310, 512–519.

    Article  PubMed  CAS  Google Scholar 

  34. Moorthy, B., Parker, K. M., Smith, C. V., Bend, J. R., & Welty, S. E. (2000). Potentiation of oxygen-induced lung injury in rats by the mechanism-based cytochrome P-450 inhibitor, 1-aminobenzotriazole. The Journal of Pharmacology and Experimental Therapeutics, 292, 553–560.

    PubMed  CAS  Google Scholar 

  35. Brusselmans, K., Compernolle, V., Tjwa, M., Wiesener, M. S., Maxwell, P. H., Collen, D., & Carmeliet, P. (2003). Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. The Journal of Clinical Investigation, 111, 1519–1527.

    Article  PubMed  CAS  Google Scholar 

  36. Yu, A. Y., Shimoda, L. A., Iyer, N. V., Huso, D. L., Sun, X., McWilliams, R., Beaty, T., Sham, J. S. K., Wiener, C. M. et al. (1999). Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. The Journal of Clinical Investigation, 103, 691–696.

    PubMed  CAS  Google Scholar 

  37. Lee, K., Burgoon, L. D., Lamb, L., Dere, E., Zacharewski, T. R., Hogenesch, J. B., & LaPres, J. J. (2006). Identification and characterization of genes susceptible to transcriptional cross-talk between the hypoxia and dioxin signaling cascades. Chemical Research in Toxicology, 19, 1284–1293.

    Article  PubMed  CAS  Google Scholar 

  38. Allen, J. W., Johnson, R. S., & Bhatia, S. N. (2005). Hypoxic inhibition of 3-methylcholanthrene-induced CYP1A1 expression is independent of HIF-1alpha. Toxicology Letters, 155, 151–159.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Heart Association (055028Z) and NIH (HL078914) to M.K.W. We thank Ed Bedrick for assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Walker, M.K. Crosstalk Between the Aryl Hydrocarbon Receptor and Hypoxia on the Constitutive Expression of Cytochrome P4501A1 mRNA. Cardiovasc Toxicol 7, 282–290 (2007). https://doi.org/10.1007/s12012-007-9007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-9007-6

Keywords

Navigation