Skip to main content
Log in

Cardiotoxicity Associated with Nicotinamide Phosphoribosyltransferase Inhibitors in Rodents and in Rat and Human-Derived Cells Lines

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein that functions as an enzyme, cytokine, growth factor and hormone. As a target for oncology, NAMPT is particularly attractive, because it catalyzes the rate-limiting step in the salvage pathway to generate nicotinamide adenine dinucleotide (NAD), a universal energy- and signal-carrying molecule involved in cellular energy metabolism and many homeostatic functions. Inhibition of NAMPT generally results in NAD depletion, followed by ATP reduction and loss of cell viability. Herein, we describe NAMPT inhibitor (NAMPTi)-induced cardiac toxicity in rodents following short-term administration (2–7 days) of NAMPTi’s. The cardiac toxicity was interpreted as a functional effect leading to congestive heart failure, characterized by sudden death, thoracic and abdominal effusion, and myocardial degeneration. Based on exposures in the initial in vivo safety rodent studies and cardiotoxicity observed, we conducted studies in rat and human in vitro cardiomyocyte cell systems. Based on those results, combined with human cell line potency data, we demonstrated the toxicity is both on-target and likely human relevant. This toxicity was mitigated in vitro by co-administration of nicotinic acid (NA), which can enable NAD production through the NAMPT-independent pathway; however, this resulted in only partial mitigation in in vivo studies. This work also highlights the usefulness and predictivity of in vitro cardiomyocyte assays using human cells to rank-order compounds against potency in cell-based pharmacology assays. Lastly, this work strengthens the correlation between cardiomyocyte cell viability and functionality, suggesting that these assays together may enable early assessment of cardiotoxicity in vitro prior to conduct of in vivo studies and potentially reduce subsequent attrition due to cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NAMPT:

Nicotinamide phosphoribosyltransferase

NAPRT:

Nicotinic acid phosphoribosyltransferase

NAD:

Nicotinamide adenine dinucleotide

NA:

Nicotinic acid

NAMPTi:

NAMPT inhibitors

ESC:

Embryonic stem cell

iPSC:

Induced pluripotent stem cell

H&E:

Hematoxylin and eosin

ATP:

Adenosine triphosphate

References

  1. Bair, K., Baumeister, T. R., Dragovich, P., Gosselin, F., Yuen, P. W., Zak, M., et al. (2013). Preparation of pyridinyl and pyrimidinyl sulfoxide and sulfone derivatives as NAMPT inhibitors. WO2013127267.

  2. Burgos, E. S. (2011). NAMPT in regulated NAD biosynthesis and its pivotal role in human metabolism. Current Medicinal Chemistry, 18, 1947–1961.

    Article  CAS  PubMed  Google Scholar 

  3. Cerna, D., Li, H., Flaherty, S., Takebe, N., Coleman, C. N., & Yoo, S. S. (2012). Inihibition of nicotinamide phosphoryltransferase (NAMPT) activity by small molecule GMX1778 regulates reactive oxygen species (ROS)-mediated cytotoxicity in a p53- and nicotinic acid phosphoribosyltransferase1 (NAPRT1)-dependent manner. Journal of Biological Chemistry, 287, 22408–22417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hasmann, M., & Schemainda, I. (2003). FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoryltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Research, 63, 7436–7442.

    CAS  PubMed  Google Scholar 

  5. Holen, K., Saltz, L. B., Hollywood, E., Burk, K., & Hanauske, A. R. (2008). The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Investigational New Drugs, 26, 45–51.

    Article  CAS  PubMed  Google Scholar 

  6. Hovstadius, P., Larsson, R., Jonsson, E., Skov, T., Kissmeyer, A. M., Krasilnikoff, K., et al. (2002). A phase I study of CHS 828 in patients with solid tumor malignancy. Clinical Cancer Research, 8, 2843–2850.

    CAS  PubMed  Google Scholar 

  7. Hsu, C. P., Oka, S., Shao, D., Hariharan, N., & Sodoshima, J. (2009). Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circulation Research, 105, 481–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirsch, A. G., Obejero-Paz, C. A., & Bruening-Wright, A. (2014). Functional characterization of human stem cell-derived cardiomyocytes. In S. J. Enna, M. Williams, T. Kenakin, P. McGonigle, & B. Ruggeri (Eds.), Current protocols in pharmacology (pp. 11.12.1–11.12.26). San Francisco, CA: Wiley.

    Chapter  Google Scholar 

  9. Leyton-Mange, J. S., & Milan, D. J. (2014). Pluripotent stem cells as a platform for cardiac arrhythmia drug screening. Current Treatment Options in Cardiovascular Medicine, 16, 334–352.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liang, X., Yang, L., Qin, A. R., Ly, J., Liederer, B. M., Messick, K., et al. (2014). Measuring NAD+ levels in mouse blood and tissue samples via a surrogate matrix approach using LC-MS/MS. Bioanalysis, 6, 1445–1457.

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien, T., Oeh, J., Xiao, Y., Liang, X., Vanderbilt, A., Qin, A., et al. (2013). Supplementation of nicotonic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models. Neoplasia, 15, 1314–1329.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oh, A., Ho, Y. C., Zak, M., Yongbo, L., Chen, X., Yuen, P., et al. (2014). Structural and biochemical analyses of the catalysis and potency impact of inhibitor phosphoribosylation by human nicotinamide phosphoribosyltransferase. ChemBioChem, 15, 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  13. Olesen, U. H., Hastrup, N., Sehested, M. (2011). Expression patterns of nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase in human malignant lymphomas. APMIS, 119(4–5), 296–303.

    Article  CAS  PubMed  Google Scholar 

  14. Peters, M. F., Lamore, S. D., Guo, L., Scott, C. W., & Kolaja, K. L. (2014). Human stem cell-derived cardiomyocytes in cellular impedance assays: Bringing cardiotoxicity screening to the front line. Cardiovascular Toxicology. doi:10.1007/s12012-014-9268-9.

    Google Scholar 

  15. Pishvaian, M. J., Marshall, J. L., Hwang, J. J., Malik, S., He, A. R., Deeken, J. F., et al. (2009). A phase I trial of GMX1777, an inhibitor of nicotinamide phosphoribosyl transferase (NAMPRT), given as a 24-hour infusion. Journal of Clinical Oncology, 27, A3581.

    Google Scholar 

  16. Ravaud, A., Cerny, T., Terret, C., Wanders, J., Nguyen Bui, B., Hess, D., et al. (2005). Phase I study and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study. European Journal of Cancer, 41, 702–707.

    Article  CAS  PubMed  Google Scholar 

  17. Shames, D. S., Elkins, K., Walter, K., Holcomb, T., Du, P., Mohl, D., et al. (2013). Loss of NAPRT1 expression by tumor-specific promoter methylation provides a novel predictive biomarker for NAMPT inhibitors. Clinical Cancer Research, 19, 6912–6923.

    Article  CAS  PubMed  Google Scholar 

  18. Singh, J., Zabka, T., Uppal, H., Diaz, D., Tarrant, J., Clarke, E., et al. (2013). Effects of nicotinamide phosphoribosyltransferase inhibitors on platelet development. Toxicological Sciences, 52(Suppl), 2179.

    Google Scholar 

  19. von Heideman, A., Berglund, A., Larsson, R., & Nygren, P. (2010). Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemotherapy and Pharmacology, 65, 1165–1172.

    Article  CAS  Google Scholar 

  20. Watson, M., Roulston, A., Belec, L., Billot, X., Marcellus, R., Bedard, D., et al. (2009). The small molecule GMX1778 is a potent inhibitor of NAD+ biosynthesis: Strategy for enhanced therapy in nicotinic acid phosphoribosyltransferase 1-deficient tumors. Molecular and Cellular Biology, 29, 5872–5888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao, Y., Elkins, K., Durieux, J. K., Lee, L., Oeh, J., Yang, L. X., et al. (2013). Dependence of tumor cell lines and patient-derived tumors on the NAD salvage pathway renders them sensitive to NAMPT inhibition with GNE-618. Neoplasia, 15, 1151–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ying, W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxidants and Redox Signaling, 10, 179–206.

    Article  CAS  PubMed  Google Scholar 

  23. Zabka, T. S., Singh, J., Dhawan, P., Liederer, B. M., Oeh, J., Kauss, M. A., et al. (2015). Retinal toxicity, in vivo and in vitro, associated with inhibition of nicotinamide phosphoribosyltransferase. Toxicological Sciences, 144(1), 163–172.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, L. Q., Heruth, D. P., & Ye, S. Q. (2011). Nicotinamide phosphoribosylatransferase in human diseases. Journal of Bioanalysis and Biomedicine, 3, 13–25.

    Article  PubMed  Google Scholar 

  25. Zheng, X., Bauer, P., Baumeister, T., Buckmelter, A. J., Caligiuri, M., Clodfelter, K. H., et al. (2013). Structure-based discovery of novel amide-containing nicotinamide phosphoribosyltransferase (nampt) inhibitors. Journal of Medicinal Chemistry, 56, 6413–6433.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng, X., Bair, K. W., Bauer, P., Baumeister, T., Bowman, K. K., Buckmelter, A. J., et al. (2013). Identification of amides derived from 1H-Pyrazolo[3,4-b]pyridine-5-carboxylic acid as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT). Bioorganic and Medicinal Chemistry Letters, 23, 5488–5497.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dolo Diaz, Donna Dambach, and Jacqueline Tarrant for valuable discussions and input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Misner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misner, D.L., Kauss, M.A., Singh, J. et al. Cardiotoxicity Associated with Nicotinamide Phosphoribosyltransferase Inhibitors in Rodents and in Rat and Human-Derived Cells Lines. Cardiovasc Toxicol 17, 307–318 (2017). https://doi.org/10.1007/s12012-016-9387-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-016-9387-6

Keywords

Navigation