Skip to main content
Log in

STAT5 Reactivation by Catechin Modulates H2O2-Induced Apoptosis Through miR-182/FOXO1 Pathway in SK-N-MC Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

It has been suggested that oxidative stress-induced apoptosis is a major contributing factor in the pathogenesis of Alzheimer’s and Parkinson’s diseases. However, the molecular mechanism of the oxidative stress-associated apoptosis is far to be elucidated. Herein, we investigated whether STAT5, which is involved in many signaling pathways, is affected by oxidative stress. Previously, it has been shown that STAT5 is a direct activator of miR-182 which is in turn a robust inhibitor of FOXO1. Our results showed that oxidative stress inactivated STAT5 may be in a JAK2-independent manner. Thus, under oxidative stress and miR-182 down-regulation, FOXO1 has the opportunity to be translated leading to FOXO1 over-expression. Finally, pro-apoptotic gene targets of FOXO1 e.g., Bim and Bax are up-regulated leading to apoptosis. To further confirm such events, we also demonstrated that Catechin, a well-known natural antioxidant, partially restored both the STAT5 activation and miR-182 expression resulting in cell survival. To the best of our knowledge, this is the first study demonstrating that STAT5/miRNA-182 negatively regulates FOXO1 in response to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ROS:

Reactive oxygen species

FOXO1:

Forkhead box protein O1

STAT:

Signal transducers and activators of transcription

JAK:

Janus tyrosine kinase

References

  1. Sies, H. (2000). Oxidative stress: From basic research to clinical application. The American Journal of Medicine, 91, S31–S38.

    Article  Google Scholar 

  2. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  3. Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40, 405–412.

    Article  CAS  PubMed  Google Scholar 

  4. Coyle, J. T., & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262, 689–695.

    Article  CAS  PubMed  Google Scholar 

  5. Halliwell, B. (2007). Oxidative stress and cancer: have we moved forward? Biochemical Journal, 401, 1–11.

    Article  CAS  PubMed  Google Scholar 

  6. Thannickal, V. J., & Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cellular and Molecular Physiology., 279, L1005–L1028.

    CAS  PubMed  Google Scholar 

  7. Patel, R. P., Moellering, D., Murphy-Ullrich, J., Jo, H., Beckman, J. S., & Darley-Usmar, V. M. (2000). Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radical Biology and Medicine, 28, 1780–1794.

    Article  CAS  PubMed  Google Scholar 

  8. Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S., & Floyd, R. A. (2000). Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology and Medicine, 28, 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  9. Ruch, R. J., Cheng, S., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10, 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  10. Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., & Chen, Z. Y. (2001). Theaflavins in black tea and catechins in green tea are equally effective antioxidants. The Journal of nutrition., 131, 2248–2251.

    CAS  PubMed  Google Scholar 

  11. Mandel, S., Amit, T., Reznichenko, L., Weinreb, O., & Youdim, M. B. H. (2006). Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Molecular Nutrition & Food Research, 50, 229–234.

    Article  CAS  Google Scholar 

  12. Rawlings, J. S., Rosler, K. M., & Harrison, D. A. (2004). The JAK/STAT signaling pathway. Journal of Cell Science, 117, 1281–1283.

    Article  CAS  PubMed  Google Scholar 

  13. Gamero, A. M., & Larner, A. C. (2001). Vanadate facilitates interferon α-mediated apoptosis that is dependent on the Jak/Stat pathway. Journal of Biological Chemistry, 276, 13547–13553.

    CAS  PubMed  Google Scholar 

  14. Weber-Nordt, R., Mertelsmann, R., & Finke, J. (1998). The JAK-STAT pathway: signal transduction involved in proliferation, differentiation and transformation. Leukemia & lymphoma., 28, 459–467.

    CAS  Google Scholar 

  15. Lu, Y., Zhou, J., Xu, C., Lin, H., Xiao, J., Wang, Z., et al. (2008). JAK/STAT and PI3 K/AKT pathways form a mutual transactivation loop and afford resistance to oxidative stress-induced apoptosis in cardiomyocytes. Cellular Physiology and Biochemistry, 21, 305–314.

    Article  CAS  PubMed  Google Scholar 

  16. Simon, A. R., Rai, U., Fanburg, B. L., & Cochran, B. H. (1998). Activation of the JAK-STAT pathway by reactive oxygen species. American Journal of Physiology-Cell Physiology., 275, C1640–C1652.

    CAS  Google Scholar 

  17. Mazière, C., Conte, M. A., & Mazière, J. C. (2001). Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein. Free Radical Biology and Medicine, 31, 1334–1340.

    Article  PubMed  Google Scholar 

  18. Sandberg, E. M., & Sayeski, P. P. (2004). Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. Journal of Biological Chemistry, 279, 34547–34552.

    Article  CAS  PubMed  Google Scholar 

  19. Madamanchi, N. R., Li, S., Patterson, C., & Runge, M. S. (2001). Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 321–326.

    Article  CAS  PubMed  Google Scholar 

  20. Yu, H., Zhi, J., Cui, Y., Tang, E., Sun, S., Feng, J., et al. (2006). Role of the JAK-STAT pathway in protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC12 cells. Apoptosis, 11, 931–941.

    Article  CAS  PubMed  Google Scholar 

  21. Buitenhuis, M., Coffer, P. J., & Koenderman, L. (2004). Signal transducer and activator of transcription 5 (STAT5). The international journal of biochemistry & cell biology., 36, 2120–2124.

    Article  CAS  Google Scholar 

  22. Ambrosio, R., Fimiani, G., Monfregola, J., Sanzari, E., De Felice, N., Salerno, M. C., et al. (2002). The structure of human STAT5A and B genes reveals two regions of nearly identical sequence and an alternative tissue specific STAT5B promoter. Gene, 285, 311–318.

    Article  CAS  PubMed  Google Scholar 

  23. Socolovsky, M., Fallon, A. E. J., Wang, S., Brugnara, C., & Lodish, H. F. (1999). Fetal anemia and apoptosis of red cell progenitors in Stat5a/5b mice: A direct role for Stat5 in Bcl-XL induction. Cell, 98, 181–191.

    Article  CAS  PubMed  Google Scholar 

  24. Lord, J. D., McIntosh, B. C., Greenberg, P. D., & Nelson, B. H. (2000). The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. The Journal of Immunology, 164, 2533–2541.

    Article  CAS  PubMed  Google Scholar 

  25. Dudley, A. C., Thomas, D., Best, J., & Jenkins, A. (2004). The STATs in cell stress-type responses. Cell Communication and Signaling, 2, 8–13.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Debierre-Grockiego, F. (2004). Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis, 9, 717–728.

    Article  CAS  PubMed  Google Scholar 

  27. Inui, M., Martello, G., & Piccolo, S. (2010). MicroRNA control of signal transduction. Nature Reviews Molecular Cell Biology, 11, 252–263.

    Article  CAS  PubMed  Google Scholar 

  28. Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10, 126–139.

    Article  CAS  PubMed  Google Scholar 

  29. Stark, A., Brennecke, J., Bushati, N., Russell, R. B., & Cohen, S. M. (2005). Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell, 123, 1133–1146.

    Article  CAS  PubMed  Google Scholar 

  30. Griffiths-Jones, S. (2010). miRBase: microRNA sequences and annotation. Current Protocols in Bioinformatics., 12, 1–12.

    Google Scholar 

  31. Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Current Opinion in Genetics & Development, 15, 563–568.

    Article  CAS  Google Scholar 

  32. Li, G., Miskimen, K. L., Wang, Z., Xie, X. Y., Brenzovich, J., Ryan, J. J., et al. (2010). STAT5 requires the N-domain for suppression of miR15/16, induction of bcl-2, and survival signaling in myeloproliferative disease. Blood, 115, 1416–1424.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. O’Neill, L. A. J. (2010). Outfoxing Foxo1 with miR-182. Nature Immunology, 11, 983–984.

    Article  PubMed  Google Scholar 

  34. Stittrich, A. B., Haftmann, C., Sgouroudis, E., Kühl, A. A., Hegazy, A. N., Panse, I., et al. (2010). The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nature Immunology, 11, 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  35. Guttilla, I. K., & White, B. A. (2009). Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. Journal of Biological Chemistry, 284, 23204–23216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Furukawa-Hibi, Y., Kobayashi, Y., Chen, C., & Motoyama, N. (2005). FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxidants & Redox Signaling, 7, 752–760.

    Article  CAS  Google Scholar 

  37. Tothova, Z., Kollipara, R., Huntly, B. J., Lee, B. H., Castrillon, D. H., Cullen, D. E., et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell, 128, 325–339.

    Article  CAS  PubMed  Google Scholar 

  38. Gheysarzadeh, A., & Yazdanparast, R. (2012). Inhibition Of H 2O 2 Induced Cell Death Through Foxo1 Modulation By Euk-172 In Sk-N-Mc Cells. European Journal of Pharmacology, 697, 47–52.

    Article  CAS  PubMed  Google Scholar 

  39. D’Autréaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8, 813–824.

    Article  PubMed  Google Scholar 

  40. Choi, W. S., Eom, D. S., Han, B. S., Kim, W. K., Han, B. H., Choi, E. J., et al. (2004). Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8-and-9-mediated apoptotic pathways in dopaminergic neurons. Journal of Biological Chemistry, 279, 20451–20460.

    Article  CAS  PubMed  Google Scholar 

  41. Raza, H., & John, A. (2007). In vitro protection of reactive oxygen species-induced degradation of lipids, proteins and 2-deoxyribose by tea catechins. Food and Chemical Toxicology, 45, 1814–1820.

    Article  CAS  PubMed  Google Scholar 

  42. Ihle, J. N. (2001). The Stat family in cytokine signaling. Current Opinion in Cell Biology, 13, 211–217.

    Article  CAS  PubMed  Google Scholar 

  43. Nosaka, T., Kawashima, T., Misawa, K., Ikuta, K., Mui, A. L. F., & Kitamura, T. (1999). STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. The EMBO Journal., 18, 4754–4765.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Byts, N., Samoylenko, A., Fasshauer, T., Ivanisevic, M., Hennighausen, L., Ehrenreich, H., et al. (2008). Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death and Differentiation, 15, 783–792.

    Article  CAS  PubMed  Google Scholar 

  45. Cholez, E., Debuysscher, V., Bourgeais, J., Boudot, C., Leprince, J., Tron, F., et al. (2012). Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells. Leukemia, 26(11), 2390–2397.

    Article  CAS  PubMed  Google Scholar 

  46. Shimoda, K., Feng, J., Murakami, H., Nagata, S., Watling, D., Rogers, N. C., et al. (1997). Jak1 plays an essential role for receptor phosphorylation and Stat activation in response to granulocyte colony-stimulating factor. Blood, 90, 597–604.

    CAS  PubMed  Google Scholar 

  47. Caffarel, M. M., Zaragoza, R., Pensa, S., Li, J., Green, A. R., & Watson, C. J. (2011). Constitutive activation of JAK2 in mammary epithelium elevates Stat5 signalling, promotes alveologenesis and resistance to cell death, and contributes to tumourigenesis. Cell Death and Differentiation, 19, 511–522.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Kirken, R. A., Rui, H., Malabarba, M. G., Howard, O., Kawamura, M., O’Shea, J. J., et al. (1995). Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and STAT5 recruitment by a COOH-terminal region of the IL-2 receptor beta-chain. Cytokine, 7, 689–700.

    Article  CAS  PubMed  Google Scholar 

  49. Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., et al. (2011). miR-182-mediated down-regulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Molecular Cell, 41, 210–220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhang, L., Liu, T., Huang, Y., & Liu, J. (2011). microRNA-182 inhibits the proliferation and invasion of human lung adenocarcinoma cells through its effect on human cortical actin-associated protein. International Journal of Molecular Medicine, 28, 381–388.

    PubMed  Google Scholar 

  51. Segura, M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., et al. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceedings of the National Academy of Sciences, 106, 1814–1819.

    Article  CAS  Google Scholar 

  52. Lam, E., Francis, R., & Petkovic, M. (2006). FOXO transcription factors: key regulators of cell fate. Biochemical Society Transactions, 34, 722–726.

    Article  CAS  PubMed  Google Scholar 

  53. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  54. Abmayr, S. M., Carrozza, M. J., & Workman, J. L. (2003). Preparation of nuclear and cytoplasmic extracts from mammalian cells. Current protocols in pharmacology. John Wiley, 12(1), 1.

    Google Scholar 

  55. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  56. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al. (2005). Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Research, 33, e179–e179.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of this investigation by the Research Council of University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Yazdanparast.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheysarzadeh, A., Yazdanparast, R. STAT5 Reactivation by Catechin Modulates H2O2-Induced Apoptosis Through miR-182/FOXO1 Pathway in SK-N-MC Cells. Cell Biochem Biophys 71, 649–656 (2015). https://doi.org/10.1007/s12013-014-0244-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0244-6

Keywords

Navigation