Skip to main content

Advertisement

Log in

Effects of Ezetimibe on Endothelial Progenitor Cells and Microparticles in High-Risk Patients

  • Translational Biomedical Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Imbalance on endothelial turnover can predict cardiovascular outcomes. We aimed at evaluating the effects of lipid-modifying therapies on circulating endothelial progenitor cells (EPCs), endothelial microparticles (EMPs), and platelet microparticles (PMPs) in high cardiovascular risk subjects with elevated C-reactive protein (CRP). Sixty-three individuals with coronary heart disease (CHD) or CHD risk equivalent on stable statin therapy, with LDL-cholesterol <100 mg/dL and CRP ≥2.0 mg/L were selected. After a 4-week run-in period with atorvastatin 10 mg, those with persistent CRP ≥2.0 mg/L were randomized to another 4-week treatment period with atorvastatin 40 mg, ezetimibe 10 mg or atorvastatin 40 mg/ezetimibe 10 mg. EPC (CD34+/CD133+/KDR+), EMP (CD51+), and PMP (CD42+/CD31+) were quantified by flow cytometry. Atorvastatin 40 mg and atorvastatin 40 mg/ezetimibe 10 mg reduced LDL-cholesterol (P < 0.001, paired T test, vs. baseline). Combined therapy, but not ezetimibe reduced CRP. CD34+/KDR+ EPC were reduced after ezetimibe alone (P = 0.011 vs. baseline, Wilcoxon test) or combined with atorvastatin (P = 0.016 vs. baseline, Wilcoxon test). In addition, ezetimibe increased CD51+ EMP (P = 0.017 vs. baseline, Wilcoxon test). No correlations between these markers and LDL-cholesterol or CRP were observed. These results contribute to understand the link between inflammation and vascular homeostasis and highlight the broader benefit of statins decreasing inflammation and preventing microparticles release, an effect not observed with ezetimibe alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ridker, P. M., Danielson, E., Fonseca, F. A., Genest, J., Gotto, A. M., Jr., Kastelein, J. J., et al. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England Journal of Medicine, 359, 2195–2207.

    Article  CAS  PubMed  Google Scholar 

  2. Chan, K. Y., Boucher, E. S., Gandhi, P. J., & Silva, M. A. (2004). HMG-CoA reductase inhibitors for lowering elevated levels of C-reactive protein. American Journal of Health-System Pharmacy, 61, 1676–1681.

    CAS  PubMed  Google Scholar 

  3. Ridker, P. M., Danielson, E., Fonseca, F. A., Genest, J., Gotto, A. M., Jr., Kastelein, J. J., et al. (2009). Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. The Lancet, 373, 1175–1182.

    Article  CAS  Google Scholar 

  4. Ridker, P. M., Morrow, D. A., Rose, L. M., Rifai, N., Cannon, C. P., & Braunwald, E. (2005). Relative efficacy of atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: An analysis of the PROVE-IT TIMI-22 trial. Journal of the American College of Cardiology, 45, 1644–1648.

    Article  CAS  PubMed  Google Scholar 

  5. Rossebø, A. B., Pedersen, T. R., Boman, K., Brudi, P., Chambers, J. B., Egstrup, K., et al. (2008). Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. New England Journal of Medicine, 359, 1343–1356.

    Article  PubMed  Google Scholar 

  6. Kastelein, J. J., Akdim, F., Stroes, E. S., Zwinderman, A. H., Bots, M. L., Stalenhoef, A. F., et al. (2008). Simvastatin with or without ezetimibe in familial hypercholesterolemia. New England Journal of Medicine, 358, 1431–1443.

    Article  CAS  PubMed  Google Scholar 

  7. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353, 999–1007.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt-Lucke, C., Rössig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kämper, U., et al. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: Proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111, 2981–2987.

    Article  PubMed  Google Scholar 

  9. Werner, N., Wassmann, S., Ahlers, P., Kosiol, S., & Nickenig, G. (2006). Circulating CD31+/Annexin V + apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 112–116.

    Article  CAS  PubMed  Google Scholar 

  10. Mallat, Z., Benamer, H., Hugel, B., Benessiano, J., Steg, P. G., Freyssinet, J. M., et al. (2000). Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation, 101, 841–843.

    Article  CAS  PubMed  Google Scholar 

  11. Resch, T., Pircher, A., Kähler, C. M., Pratschke, J., & Hilbe, W. (2012). Endothelial progenitor cells: Current issues on characterization and challenging clinical applications. Stem Cell Reviews and Reports, 8, 926–939.

    Article  CAS  PubMed  Google Scholar 

  12. Verma, S., Kuliszewski, M. A., Li, S. H., Szmitko, P. E., Zucco, L., Wang, C. H., et al. (2004). C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: Further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation, 109, 2058–2067.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, J., Jin, J., Song, M., Dong, H., Zhao, G., & Huang, L. (2012). C-reactive protein down-regulates endothelial nitric oxide synthase expression and promotes apoptosis in endothelial progenitor cells through receptor for advanced glycation end-products. Gene, 496, 128–135.

    Article  CAS  PubMed  Google Scholar 

  14. Landmesser, U., Bahlmann, F., Mueller, M., Spiekermann, S., Kirchhoff, N., Schulz, S., et al. (2005). Simvastatin versus ezetimibe: Pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation, 111, 2356–2363.

    Article  CAS  PubMed  Google Scholar 

  15. Piorkowski, M., Fischer, S., Stellbaum, C., Jaster, M., Martus, P., Morguet, A. J., et al. (2007). Treatment with ezetimibe plus low-dose atorvastatin compared with higher-dose atorvastatin alone: Is sufficient cholesterol-lowering enough to inhibit platelets? Journal of the American College of Cardiology, 49, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, P. Y., Liu, Y. W., Lin, L. J., Chen, J. H., & Liao, J. K. (2009). Evidence for statin pleiotropy in humans: Differential effects of statins and ezetimibe on rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation, 119, 131–138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. (2001). Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA, 285, 2486–2497.

    Article  Google Scholar 

  18. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18, 499–502.

    CAS  PubMed  Google Scholar 

  19. França, C. N., Pinheiro, L. F., Izar, M. C., Brunialti, M. K., Salomão, R., Bianco, H. T., et al. (2012). Endothelial progenitor cell mobilization and platelet microparticle release are influenced by clopidogrel plasma levels in stable coronary artery disease. Circulation Journal, 76, 729–736.

    Article  PubMed  Google Scholar 

  20. da Silva, E. F., Fonseca, F. A., França, C. N., Ferreira, P. R., Izar, M. C., Salomão, R., et al. (2011). Imbalance between endothelial progenitors cells and microparticles in HIV-infected patients naive for antiretroviral therapy. AIDS, 25, 1595–1601.

    Article  PubMed  Google Scholar 

  21. Ridker, P. M., Rifai, N., Pfeffer, M. A., Sacks, F. M., Moye, L. A., Goldman, S., et al. (1998). Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation, 98, 839–844.

    Article  CAS  PubMed  Google Scholar 

  22. Sattar, N., Murray, H. M., McConnachie, A., Blauw, G. J., Bollen, E. L., Buckley, B. M., et al. (2007). C-reactive protein and prediction of coronary heart disease and global vascular events in the Prospective Study of Pravastatin in the Elderly at Risk (PROSPER). Circulation, 115, 981–989.

    Article  CAS  PubMed  Google Scholar 

  23. Davis, H. R., & Veltri, E. P. (2007). Zetia: Inhibition of Niemann-Pick C1 Like 1 (NPC1L1) to reduce intestinal cholesterol absorption and treat hyperlipidemia. Journal of Atherosclerosis and Thrombosis, 14, 99–108.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Q., & Liao, J. K. (2010). Pleiotropic effects of statins. Basic research and clinical perspectives. Circulation Journal, 74, 818–826.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vasa, M., Fichtlscherer, S., Adler, K., Aicher, A., Martin, H., Zeiher, A. M., et al. (2001). Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 103, 2885–2890.

    Article  CAS  PubMed  Google Scholar 

  26. Pinheiro, L. F., França, C. N., Izar, M. C., Barbosa, S. P., Bianco, H. T., Kasmas, S. H., et al. (2012). Pharmacokinetic interactions between clopidogrel and rosuvastatin: Effects on vascular protection in subjects with coronary heart disease. International Journal of Cardiology, 158, 125–129.

    Article  PubMed  Google Scholar 

  27. Hristov, M., Fach, C., Becker, C., Heussen, N., Liehn, E. A., Blindt, R., et al. (2007). Reduced numbers of circulating endothelial progenitor cells in patients with coronary artery disease associated with long-term statin treatment. Atherosclerosis, 192, 413–420.

    Article  CAS  PubMed  Google Scholar 

  28. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent, C., Blackwell, L., Emberson, J., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomized trials. The Lancet, 376, 1670–1681.

    Article  Google Scholar 

  29. Kasmas, S. H., Izar, M. C., França, C. N., Ramos, S. C., Moreira, F. T., Helfenstein, T., et al. (2012). Differences in synthesis and absorption of cholesterol of two effective lipid-lowering therapies. Brazilian Journal of Medical and Biological Research, 45, 1095–1101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Barbosa, S. P., Lins, L. C., Fonseca, F. A., Matos, L. N., Aguirre, A. C., Bianco, H. T., et al. (2013). Effects of ezetimibe on markers of synthesis and absorption of cholesterol in high-risk patients with elevated C-reactive protein. Life Sciences, 92, 845–851.

    Article  CAS  PubMed  Google Scholar 

  31. Dimmeler, S., Aicher, A., Vasa, M., Mildner-Rihm, C., Adler, K., Tiemann, M., et al. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. Journal of Clinical Investigation, 108, 391–397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dimmeler, S., & Zeiher, A. M. (2004). Vascular repair by circulating endothelial progenitor cells: The missing link in atherosclerosis? Journal of Molecular Medicine, 82, 671–677.

    Article  PubMed  Google Scholar 

  33. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., et al. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research, 89, E1–E7.

    Article  CAS  PubMed  Google Scholar 

  34. Sari, I., Bozkaya, G., Kirbiyik, H., Alacacioglu, A., Ates, H., Sop, G., et al. (2012). Evaluation of circulating endothelial and platelet microparticles in men with ankylosing spondylitis. Journal of Rheumatology, 39, 594–599.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research Grant #2009/50052-1 from FAPESP (Foundation for Research of the State of Sao Paulo, Brazil). LCL has received research Grant from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil).

Conflicts of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Izar.

Additional information

Lívia Campos Amaral Lins and Carolina Nunes França have equally contributed for this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lins, L.C.A., França, C.N., Fonseca, F.A.H. et al. Effects of Ezetimibe on Endothelial Progenitor Cells and Microparticles in High-Risk Patients. Cell Biochem Biophys 70, 687–696 (2014). https://doi.org/10.1007/s12013-014-9973-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9973-9

Keywords

Navigation