Skip to main content
Log in

Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Somatic cells can be reprogrammed to pluripotent stem cells or transdifferentiate to another lineage cell type. Much efforts have been made to unravel the epigenetic mechanisms underlying the cell fate conversion. Histone modifications as the major epigenetic regulator are implicated in various aspects of reprogramming and transdifferentiation. Here, we discuss the roles of histone modifications on reprogramming and transdifferentiation and hopefully provide new insights into induction and promotion of the cell fate conversion by modulating histone modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gurdon, J. B., Elsdale, T. R., & Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 182, 64–65.

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  3. Hussein, S. M., & Nagy, A. A. (2012). Progress made in the reprogramming field: new factors, new strategies and a new outlook. Current Opinion in Genetics & Development, 22, 435–443.

    Article  CAS  Google Scholar 

  4. Han, W. D., Zhao, Y. L., & F. X. B. (2010). Induced pluripotent stem cells: the dragon awakens. Bioscience, 60, 278–285.

  5. Yang, X. (2015). Applications of CRISPR-Cas9 mediated genome engineering. Mil Med Res, 2, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li, H. L., Gee, P., Ishida, K., & Hotta, A. (2016). Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods, 101, 27–35.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, Z., Xu, M., Wu, M., Tian, X., Zhang, C., & F. X. (2015). Transdifferentiation of fibroblasts by defined factors. Cellular Reprogramming, 17, 151–159.

  8. Xu, J., Du, Y., & Deng, H. (2015). Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell, 16, 119–134.

    Article  CAS  PubMed  Google Scholar 

  9. Xie, H., Ye, M., Feng, R., & Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell, 117, 663–676.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). Vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455, 627–632.

    Article  CAS  PubMed  Google Scholar 

  11. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colasante, G., Lignani, G., Rubio, A., et al. (2015). Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming. Cell Stem Cell, 17, 719–734.

    Article  CAS  PubMed  Google Scholar 

  13. Ieda, M., Fu, J. D., Delgado-Olguin, P., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Y., Cao, N., Huang, Y., et al. (2016). Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell, 18, 368–381.

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita, J. K. (2016). Expanding reprogramming to cardiovascular progenitors. Cell Stem Cell, 18, 299–301.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, P., He, Z., Ji, S., et al. (2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 475, 386–389.

    Article  CAS  PubMed  Google Scholar 

  17. Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    Article  CAS  PubMed  Google Scholar 

  18. Vierbuchen, T., & Wernig, M. (2012). Molecular roadblocks for cellular reprogramming. Molecular Cell, 47, 827–838.

    Article  CAS  PubMed  Google Scholar 

  19. Papp, B., & Plath, K. (2013). Epigenetics of reprogramming to induced pluripotency. Cell, 152, 1324–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soufi, A., Donahue, G., & Zaret, K. S. (2012). Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell, 151, 994–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soufi, A., Garcia, M. F., Jaroszewicz, A., Osman, N., Pellegrini, M., & Zaret, K. S. (2015). Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell, 161, 555–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iwafuchi-Doi, M., & Zaret, K. S. (2014). Pioneer transcription factors in cell reprogramming. Genes & Development, 28, 2679–2692.

    Article  CAS  Google Scholar 

  23. Buganim, Y., Faddah, D. A., Cheng, A. W., et al. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell, 150, 1209–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Polo, J. M., Anderssen, E., Walsh, R. M., et al. (2012). A molecular roadmap of reprogramming somatic cells into iPS cells. Cell, 151, 1617–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matoba, S., Liu, Y., Lu, F., et al. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 159, 884–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koche, R. P., Smith, Z. D., Adli, M., et al. (2011). Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell, 8, 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hussein, S. M., Puri, M. C., Tonge, P. D., et al. (2014). Genome-wide characterization of the routes to pluripotency. Nature, 516, 198–206.

    Article  CAS  PubMed  Google Scholar 

  28. Tonge, P. D., Corso, A. J., Monetti, C., et al. (2014). Divergent reprogramming routes lead to alternative stem-cell states. Nature, 516, 192–197.

    Article  CAS  PubMed  Google Scholar 

  29. Mansour, A. A., Gafni, O., Weinberger, L., et al. (2012). The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature, 488, 409–413.

    Article  CAS  PubMed  Google Scholar 

  30. Fragola, G., Germain, P. L., Laise, P., et al. (2013). Cell reprogramming requires silencing of a core subset of polycomb targets. PLoS Genetics, 9 .e1003292

  31. Onder, T. T., Kara, N., Cherry, A., et al. (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature, 483, 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ang, Y. S., Tsai, S. Y., Lee, D. F., et al. (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell, 145, 183–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shakya, A., Callister, C., Goren, A., et al. (2015). Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Molecular and Cellular Biology, 35, 1014–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huangfu, D., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26, 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  35. Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Scholer, H. R., & Ding, S. (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3, 568–574.

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y., Zhang, Q., Yin, X., et al. (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 21, 196–204.

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Z., Augustin, J., Hu, J., & Jiang, H. (2015). Physical interactions and functional coordination between the Core subunits of Set1/Mll complexes and the reprogramming factors. PloS One, 10 .e0145336

  38. Hirsch, C. L., Coban Akdemir, Z., Wang, L., et al. (2015). Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes & Development, 29, 803–816.

    Article  CAS  Google Scholar 

  39. Rao, R. A., Dhele, N., Cheemadan, S., et al. (2015). Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Scientific Reports, 5 .8229

  40. Chen, J., Liu, H., Liu, J., et al. (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genetics, 45, 34–42.

    Article  CAS  PubMed  Google Scholar 

  41. Sridharan, R., Gonzales-Cope, M., Chronis, C., et al. (2013). Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1gamma in reprogramming to pluripotency. Nature Cell Biology, 15, 872–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Z., Jones, A., Sun, C. W., et al. (2011). PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cells, 29, 229–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moon, J. H., Heo, J. S., Kim, J. S., et al. (2011). Reprogramming fibroblasts into induced pluripotent stem cells with Bmi1. Cell Research, 21, 1305–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pereira, C. F., Piccolo, F. M., Tsubouchi, T., et al. (2010). ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency. Cell Stem Cell, 6, 547–556.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, W., Li, Q., Ayers, S., et al. (2013). Jmjd 3 inhibits reprogramming by upregulating expression of INK4a/Arf and targeting PHF20 for ubiquitination. Cell, 152, 1037–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, W., Li, K., Wei, W., & Ding, S. (2013). Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell, 13, 270–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Theunissen, T. W., & Jaenisch, R. (2014). Molecular control of induced pluripotency. Cell Stem Cell, 14, 720–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Esteban, M. A., Wang, T., Qin, B., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71–79.

    Article  CAS  PubMed  Google Scholar 

  49. Tran, K. A., Jackson, S. A., Olufs, Z. P., et al. (2015). Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nature Communications, 6 .6188

  50. Hou, P., Li, Y., Zhang, X., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.

    Article  CAS  PubMed  Google Scholar 

  51. Wei, X., Chen, Y., Xu, Y., et al. (2014). Small molecule compound induces chromatin de-condensation and facilitates induced pluripotent stem cell generation. Journal of Molecular Cell Biology, 6, 409–420.

    Article  PubMed  Google Scholar 

  52. Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Scholer, H. R., & Ding, S. A. (2008). Combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2, 525–528.

    Article  CAS  PubMed  Google Scholar 

  53. Huang, J., Zhang, H., Yao, J., et al. (2016). BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction, 151, 39–49.

    Article  CAS  PubMed  Google Scholar 

  54. Huang, K., Zhang, X., Shi, J., et al. (2015). Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells. Scientific Reports, 5 .17691

  55. Zhao, Y., Zhao, T., Guan, J., et al. (2015). A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell, 163, 1678–1691.

    Article  CAS  PubMed  Google Scholar 

  56. Stadtfeld M, Apostolou E, Ferrari F, et al. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nature Genetics 2012; 44:398–405, S1–2.

  57. Li, W., Zhou, H., Abujarour, R., et al. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells, 27, 2992–3000.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, H., Gayen, S., Xiong, J., et al. (2016). MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell, 18, 481–494.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, T., Chen, K., Zeng, X., et al. (2011). The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 9, 575–587.

    Article  CAS  PubMed  Google Scholar 

  60. Huangfu, D., Maehr, R., Guo, W., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26, 795–797.

    Article  CAS  PubMed  Google Scholar 

  61. Mali, P., Chou, B. K., Yen, J., et al. (2010). Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 28, 713–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li D, Wang L, Hou J, et al. (2016) Optimized approaches for generation of integration-free iPSCs from human urine-derived cells with small molecules and autologous feeder. Stem Cell Reports.

  63. Pandian, G. N., Sato, S., Anandhakumar, C., et al. (2014). Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts. ACS Chemical Biology, 9, 2729–2736.

    Article  CAS  PubMed  Google Scholar 

  64. Lee, J., Xia, Y., Son, M. Y., et al. (2012). A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells. Angewandte Chemie (International Ed. in English), 51, 12509–12513.

    Article  CAS  Google Scholar 

  65. Zhao, Y., Londono, P., Cao, Y., et al. (2015). High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nature Communications, 6 .8243

  66. Efe, J. A., Hilcove, S., Kim, J., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13, 215–222.

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Z., Chen, O., Zheng, M., et al. (2016). Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes. Stem Cell Research, 16, 507–518.

    Article  CAS  PubMed  Google Scholar 

  68. Cao, N., Huang, Y., Zheng, J., et al. (2016). Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science, 352, 1216–1220.

    Article  CAS  PubMed  Google Scholar 

  69. Park, G., Yoon, B. S., Kim, Y. S., et al. (2015). Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials, 54, 201–212.

    Article  CAS  PubMed  Google Scholar 

  70. Kim, J., Efe, J. A., Zhu, S., et al. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 108, 7838–7843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, M., Lin, Y. H., Sun, Y. J., et al. (2016). Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell, 18, 653–667.

    Article  CAS  PubMed  Google Scholar 

  72. Chen, Y., Mistry, D. S., & Sen, G. L. (2014). Highly rapid and efficient conversion of human fibroblasts to keratinocyte-like cells. The Journal of Investigative Dermatology, 134, 335–344.

    Article  CAS  PubMed  Google Scholar 

  73. Sayed, N., Wong, W. T., Ospino, F., et al. (2015). Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation, 131, 300–309.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, Y., Wang, L., Vaseghi, H. R., et al. (2016). Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell, 18, 382–395.

    Article  CAS  PubMed  Google Scholar 

  75. Barneda-Zahonero, B., Roman-Gonzalez, L., Collazo, O., et al. (2013). HDAC7 is a repressor of myeloid genes whose downregulation is required for transdifferentiation of pre-B cells into macrophages. PLoS Genetics, 9 .e1003503

  76. Zuryn, S., Ahier, A., Portoso, M., et al. (2014). Transdifferentiation. Sequential histone-modifying activities determine the robustness of transdifferentiation. Science, 345, 826–829.

    Article  CAS  PubMed  Google Scholar 

  77. Maki, N., Tsonis, P. A., & Agata, K. (2010). Changes in global histone modifications during dedifferentiation in newt lens regeneration. Molecular Vision, 16, 1893–1897.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Maki, N., Martinson, J., Nishimura, O., et al. (2010). Expression profiles during dedifferentiation in newt lens regeneration revealed by expressed sequence tags. Molecular Vision, 16, 72–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mann, J., Chu, D. C., Maxwell, A., et al. (2010). MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology, 138, 705–714 14 e1–4.

    Article  CAS  PubMed  Google Scholar 

  80. Perugorria, M. J., Wilson, C. L., Zeybel, M., et al. (2012). Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology, 56, 1129–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raciti, M., Granzotto, M., Duc, M. D., et al. (2013). Reprogramming fibroblasts to neural-precursor-like cells by structured overexpression of pallial patterning genes. Molecular and Cellular Neurosciences, 57, 42–53.

    Article  CAS  PubMed  Google Scholar 

  82. Wang, H., Cao, N., Spencer, C. I., et al. (2014). Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4. Cell Reports, 6, 951–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bramswig, N. C., Everett, L. J., Schug, J., et al. (2013). Epigenomic plasticity enables human pancreatic alpha to beta cell reprogramming. The Journal of Clinical Investigation, 123, 1275–1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng, L., Hu, W., Qiu, B., et al. (2014). Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Research, 24, 665–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng, L., Gao, L., Guan, W., et al. (2015). Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Research, 25, 1269–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hu, W., Qiu, B., Guan, W., et al. (2015). Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17, 204–212.

    Article  CAS  PubMed  Google Scholar 

  87. Zhu, S., Ambasudhan, R., Sun, W., et al. (2014). Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Research, 24, 126–129.

    Article  CAS  PubMed  Google Scholar 

  88. Fu, Y., Huang, C., Xu, X., et al. (2015). Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Research, 25, 1013–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim, D. H., Marinov, G. K., Pepke, S., et al. (2015). Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell, 16, 88–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Treutlein, B., Lee, Q. Y., Camp, J. G., et al. (2016). Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature, 534, 391–395.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Nature Science Foundation of China (81230041, 81421064) and the National Basic Science and Development Program (973 Program, 2012CB518105). There is no conflict of interest declared by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Fu.

Ethics declarations

Conflicts of Interest

The authors indicate no potential conflicts of interest.

Additional information

Hua Qin and Andong Zhao are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Zhao, A., Zhang, C. et al. Epigenetic Control of Reprogramming and Transdifferentiation by Histone Modifications. Stem Cell Rev and Rep 12, 708–720 (2016). https://doi.org/10.1007/s12015-016-9682-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9682-4

Keywords

Navigation