Skip to main content

Advertisement

Log in

Blastocyst-Derived Stem Cell Populations under Stress: Impact of Nutrition and Metabolism on Stem Cell Potency Loss and Miscarriage

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Data from in vitro and in vivo models suggest that malnutrition and stress trigger adaptive responses, leading to small for gestational age (SGA) blastocysts with fewer cell numbers. These stress responses are initially adaptive, but become maladaptive with increasing stress exposures. The common stress responses of the blastocyst-derived stem cells, pluripotent embryonic and multipotent placental trophoblast stem cells (ESCs and TSCs), are decreased growth and potency, and increased, imbalanced and irreversible differentiation. SGA embryos may fail to produce sufficient antiluteolytic placental hormone to maintain corpus luteum progesterone secretion that provides nutrition at the implantation site. Myriad stress inputs for the stem cells in the embryo can occur in vitro during in vitro fertilization/assisted reproductive technology (IVF/ART) or in vivo. Paradoxically, stresses that diminish stem cell growth lead to a higher level of differentiation simultaneously which further decreases ESC or TSC numbers in an attempt to functionally compensate for fewer cells. In addition, prolonged or strong stress can cause irreversible differentiation. Resultant stem cell depletion is proposed as a cause of miscarriage via a “quiet” death of an ostensibly adaptive response of stem cells instead of a reactive, violent loss of stem cells or their differentiated progenies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Macklon, N. S., Geraedts, J. P., & Fauser, B. C. (2002). Conception to ongoing pregnancy: The 'black box' of early pregnancy loss. Human Reproduction Update, 8, 333–343.

    Article  CAS  PubMed  Google Scholar 

  2. Spencer, T. E. (2014). Early pregnancy: Concepts, challenges, and potential solutions. Animal Frontiers, 3, 48–55.

    Article  Google Scholar 

  3. Puscheck, E. E., Awonuga, A. O., Yang, Y., et al. (2015). Molecular biology of the stress response in the early embryo and its stem cells. Advances in Experimental Medicine and Biology, 843, 77–128.

    Article  CAS  PubMed  Google Scholar 

  4. Rappolee, D. A., Zhou, S., Puscheck, E. E., et al. (2013). Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells. Reproduction, 145, R139–R155.

    Article  CAS  PubMed  Google Scholar 

  5. Adelman, D. M., Gertsenstein, M., Nagy, A., et al. (2000). Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Gene Dev., 14, 3191–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosario, G. X., Konno, T., & Soares, M. J. (2008). Maternal hypoxia activates endovascular trophoblast cell invasion. Developmental Biology, 314, 362–375.

    Article  CAS  PubMed  Google Scholar 

  7. Borman, E. D., Foster, W. G., Greenacre, M. K., et al. (2015). Stress lowers the threshold dose at which bisphenol a disrupts blastocyst implantation, in conjunction with decreased uterine closure and e-cadherin. Chemico-Biological Interactions, 237, 87–95.

    Article  CAS  PubMed  Google Scholar 

  8. McLaren A S, M.L. Embryogenesis in mammals. New York: Elsevier; 1976.

  9. Shapiro, S. S., Dyer, S. D., & Colas, A. E. (1980). Progesterone-induced glycogen accumulation in human endometrium during organ culture. American Journal of Obstetrics and Gynecology, 136, 419–425.

    Article  CAS  PubMed  Google Scholar 

  10. Salameh, W., Helliwell, J. P., Han, G., et al. (2006). Expression of endometrial glycogen synthase kinase-3beta protein throughout the menstrual cycle and its regulation by progesterone. Molecular Human Reproduction, 12, 543–549.

    Article  CAS  PubMed  Google Scholar 

  11. Wilcox, A. J., Baird, D. D., & Weinberg, C. R. (1999). Time of implantation of the conceptus and loss of pregnancy. The New England Journal of Medicine, 340, 1796–1799.

    Article  CAS  PubMed  Google Scholar 

  12. Baird, D. D., Weinberg, C. R., McConnaughey, D. R., et al. (2003). Rescue of the corpus luteum in human pregnancy. Biology of Reproduction, 68, 448–456.

    Article  CAS  PubMed  Google Scholar 

  13. Rappolee, D. A. (1999). It's not just baby's babble/babel: Recent progress in understanding the language of early mammalian development: A minireview. Molecular Reproduction and Development, 52, 234–240.

    Article  CAS  PubMed  Google Scholar 

  14. Jones, C. J., Choudhury, R. H., & Aplin, J. D. (2015). Tracking nutrient transfer at the human maternofetal interface from 4 weeks to term. Placenta, 36, 372–380.

    Article  CAS  PubMed  Google Scholar 

  15. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie, Y., Zhou, S., Jiang, Z., et al. (2014). Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Research, 13, 478–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Blerkom, J., Cox, H., & Davis, P. (2006). Regulatory roles for mitochondria in the peri-implantation mouse blastocyst: Possible origins and developmental significance of differential DeltaPsim. Reproduction, 131, 961–976.

    Article  CAS  PubMed  Google Scholar 

  18. Lenaz, G. (2001). The mitochondrial production of reactive oxygen species: Mechanisms and implications in human pathology. IUBMB Life, 52, 159–164.

    Article  CAS  PubMed  Google Scholar 

  19. Rappolee, D. A., Basilico, C., Patel, Y., et al. (1994). Expression and function of FGF-4 in peri-implantation development in mouse embryos. Development, 120, 2259–2269.

    CAS  PubMed  Google Scholar 

  20. Chai, N., Patel, Y., Jacobson, K., et al. (1998). FGF is an essential regulator of the fifth cell division in preimplantation mouse embryos. Developmental Biology, 198, 105–115.

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka, S., Kunath, T., Hadjantonakis, A. K., et al. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science, 282, 2072–2075.

    Article  CAS  PubMed  Google Scholar 

  22. Knobil, E., & Neill, J. D.( 2006). Knobil and Neill's physiology of reproduction. Amsterdam; Boston: Elsevier, 2 v. (xxix, 3230 p.).

  23. Roberts, R. M., Farin, C. E., & Cross, J. C. (1990). Trophoblast proteins and maternal recognition of pregnancy. Oxford Reviews of Reproductive Biology., 12, 147–180.

    CAS  PubMed  Google Scholar 

  24. Cross, J. C., Werb, Z., & Fisher, S. J. (1994). Implantation and the placenta - key pieces of the development puzzle. Science, 266, 1508–1518.

    Article  CAS  PubMed  Google Scholar 

  25. Artus, J., Kang, M., Cohen-Tannoudji, M., et al. (2013). PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst. Stem Cells, 31, 1932–1941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Artus, J., Piliszek, A., & Hadjantonakis, A. K. (2011). The primitive endoderm lineage of the mouse blastocyst: Sequential transcription factor activation and regulation of differentiation by Sox17. Developmental Biology, 350, 393–404.

    Article  CAS  PubMed  Google Scholar 

  27. Maunoury, R., Robine, S., Pringault, E., et al. (1988). Villin expression in the visceral endoderm and in the gut anlage during early mouse embryogenesis. The EMBO Journal, 7, 3321–3329.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Byun, K., Kim, T. K., Oh, J., et al. (2013). Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway. Stem Cell Research., 11, 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  29. Toh, Y. C., & Voldman, J. (2011). Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. The FASEB Journal, 25, 1208–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, Y., Arenas-Hernandez, M., Gomez-Lopez, N., et al. (2016). Hypoxic stress forces irreversible differentiation of a majority of mouse trophoblast stem cells despite FGF4. Biology of Reproduction, 95, 110.

    Article  PubMed  Google Scholar 

  31. Li, Q., Gomez-Lopez, N., Drewlo, S. et al. (2015). Development and validation of a Rex1-RFP potency activity reporter assay that quantifies stress-forced potency loss in mouse embryonic stem cells. Stem cells and development.

  32. Leung, H. W., Chen, A., Choo, A. B., et al. (2011). Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Engineering Part C, Methods., 17, 165–172.

    Article  CAS  PubMed  Google Scholar 

  33. Wingert, S., & Rieger, M. A. (2016). Terminal differentiation induction as DNA damage response in hematopoietic stem cells by GADD45A. Experimental Hematology., 44, 561–566.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, S., Zhou, Y., Seavey, C. N., et al. (2010). Rapid and dynamic alterations of gene expression profiles of adult porcine bone marrow-derived stem cell in response to hypoxia. Stem Cell Research., 4, 117–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inomata, K., Aoto, T., Binh, N. T., et al. (2009). Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell, 137, 1088–1099.

    Article  CAS  PubMed  Google Scholar 

  36. Slater, J. A., Zhou, S., Puscheck, E. E., et al. (2014). Stress-induced enzyme activation primes murine embryonic stem cells to differentiate toward the first extraembryonic lineage. Stem Cells and Development, 23, 3049–3064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Awonuga, A. O., Zhong, W., Abdallah, M. E., et al. (2011). Eomesodermin, HAND1, and CSH1 proteins are induced by cellular stress in a stress-activated protein kinase-dependent manner. Molecular Reproduction and Development, 78, 519–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, J., Xu, W., Sun, T., et al. (2009). Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation. Placenta, 30, 66–73.

    Article  PubMed  Google Scholar 

  39. Zhong, W., Xie, Y., Wang, Y., et al. (2007). Use of hyperosmolar stress to measure stress-activated protein kinase activation and function in human HTR cells and mouse trophoblast stem cells. Reproductive Sciences, 14, 534–547.

    Article  CAS  PubMed  Google Scholar 

  40. Xie, Y., Zhong, W., Wang, Y., et al. (2007). Using hyperosmolar stress to measure biologic and stress-activated protein kinase responses in preimplantation embryos. Molecular Human Reproduction, 13, 473–481.

    Article  CAS  PubMed  Google Scholar 

  41. Li, Q., Yang, Y., Louden, E., et al. (2016). High throughput screens for embryonic stem cells; stress-forced potency-stemness loss enables toxicological assays. In A. Faqi (Ed.), Methods in toxicology and pharmacology. Springer.

  42. Li, Q., Gomez-Lopez, N., Drewlo, S., et al. (2016). Development and validation of a Rex1-RFP potency activity reporter assay that quantifies stress-forced potency loss in mouse embryonic stem cells. Stem Cells and Development, 25, 320–328.

    Article  CAS  PubMed  Google Scholar 

  43. Xie, Y., Awonuga, A., Liu, J., et al. (2013). Stress induces AMP-dependent loss of potency factors Id2 and Cdx2 in early embryos and stem cells. Stem Cells and Development., 22, 1564–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, S., Xie, Y., Puscheck, E. E., et al. (2011). Oxygen levels that optimize TSC culture are identified by maximizing growth rates and minimizing stress. Placenta, 32, 475–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Simmons, D. G., Fortier, A. L., & Cross, J. C. (2007). Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Developmental Biology, 304, 567–578.

    Article  CAS  PubMed  Google Scholar 

  46. Riley, P., Anson-Cartwright, L., & Cross, J. C. (1998). The Hand1 bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nature Genetics, 18, 271–275.

    Article  CAS  PubMed  Google Scholar 

  47. Xie, Y., Abdallah, M. E., Awonuga, A. O., et al. (2010). Benzo(a)pyrene causes PRKAA1/2-dependent ID2 loss in trophoblast stem cells. Molecular Reproduction and Development, 77, 533–539.

    Article  CAS  PubMed  Google Scholar 

  48. Wu, G. M., Gentile, L., Fuchikami, T., et al. (2010). Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development, 137, 4159–4169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Janatpour, M. J., McMaster, M. T., Genbacev, O., et al. (2000). Id-2 regulates critical aspects of human cytotrophoblast differentiation, invasion and migration. Development, 127, 549–558.

    CAS  PubMed  Google Scholar 

  50. Cross, J. C., Flannery, M. L., Blanar, M. A., et al. (1995). Hxt encodes a basic helix-loop-helix transcription factor that regulates trophoblast cell development. Development, 121, 2513–2523.

    CAS  PubMed  Google Scholar 

  51. Kwong, W. Y., Wild, A. E., Roberts, P., et al. (2000). Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development, 127, 4195–4202.

    CAS  PubMed  Google Scholar 

  52. Sun, C., Velazquez, M. A., Marfy-Smith, S., et al. (2014). Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development, 141, 1140–1150.

    Article  CAS  PubMed  Google Scholar 

  53. Zhong, W., Xie, Y., Abdallah, M., et al. (2010). Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction, 140, 921–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anderson, P., & Kedersha, N. (2008). Stress granules: The Tao of RNA triage. Trends in Biochemical Sciences, 33, 141–150.

    Article  CAS  PubMed  Google Scholar 

  55. McEwen, E., Kedersha, N., Song, B., et al. (2005). Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. The Journal of Biological Chemistry, 280, 16925–16933.

    Article  CAS  PubMed  Google Scholar 

  56. Chakraborty, D., Cui, W., Rosario, G. X., et al (2016) HIF-KDM3A-MMP12 regulatory circuit circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proceedings of the National Academy, 113(46):E7212–E7221.

  57. Barker, D. J., & Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet, 1, 1077–1081.

    Article  CAS  PubMed  Google Scholar 

  58. Maekawa, M., Owada, Y., & Yoshikawa, T. (2011). Role of polyunsaturated fatty acids and fatty acid binding protein in the pathogenesis of schizophrenia. Current Pharmaceutical Design, 17, 168–175.

    Article  CAS  PubMed  Google Scholar 

  59. Kyle, U. G., & Pichard, C. (2006). The Dutch famine of 1944-1945: A pathophysiological model of long-term consequences of wasting disease. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 388–394.

    Article  PubMed  Google Scholar 

  60. de Rooij, S. R., Painter, R. C., Phillips, D. I., et al. (2006). Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care, 29, 1897–1901.

    Article  PubMed  Google Scholar 

  61. de Rooij, S. R., Wouters, H., Yonker, J. E., et al. (2010). Prenatal undernutrition and cognitive function in late adulthood. Proceedings of the National Academy of Sciences of the United States of America., 107, 16881–16886.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Entringer, S., Buss, C., Andersen, J., et al. (2011). Ecological momentary assessment of maternal cortisol profiles over a multiple-day period predicts the length of human gestation. Psychosomatic Medicine, 73, 469–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kinsella, M. T., & Monk, C. (2009). Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clinical Obstetrics and Gynecology, 52, 425–440.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Leese, H. J., Baumann, C. G., Brison, D. R., et al. (2008). Metabolism of the viable mammalian embryo: Quietness revisited. Molecular Human Reproduction, 14, 667–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wyman, A., Pinto, A. B., Sheridan, R., et al. (2008). One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology, 149, 466–469.

    Article  CAS  PubMed  Google Scholar 

  66. Chung, S., Dzeja, P. P., Faustino, R. S., et al. (2007). Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nature Clinical Practice. Cardiovascular Medicine, 4(Suppl 1), S60–S67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dzeja, P. P., Chung, S., Faustino, R. S., et al. (2011). Developmental enhancement of adenylate kinase-AMPK metabolic signaling axis supports stem cell cardiac differentiation. PloS One, 6, e19300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Copp, A. J. (1995). Death before birth: Clues from gene knockouts and mutations. Trends in Genetics, 11, 87–93.

    Article  CAS  PubMed  Google Scholar 

  69. Li, A., Chandrakanthan, V., Chami, O., et al. (2007). Culture of zygotes increases TRP53 [corrected] expression in B6 mouse embryos, which reduces embryo viability. Biology of Reproduction, 76, 362–367.

    Article  CAS  PubMed  Google Scholar 

  70. Momand, J., Wu, H. H., & Dasgupta, G. (2000). MDM2--master regulator of the p53 tumor suppressor protein. Gene, 242, 15–29.

    Article  CAS  PubMed  Google Scholar 

  71. de Montes, O. L. R., Wagner, D. S., & Lozano, G. (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature, 378, 203–206.

    Article  Google Scholar 

  72. Jones, S. N., Roe, A. E., Donehower, L. A., et al. (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature, 378, 206–208.

    Article  CAS  PubMed  Google Scholar 

  73. Keim, A. L., Chi, M. M., & Moley, K. H. (2001). Hyperglycemia-induced apoptotic cell death in the mouse blastocyst is dependent on expression of p53. Molecular Reproduction and Development, 60, 214–224.

    Article  CAS  PubMed  Google Scholar 

  74. Sadeu, J. C., Hughes, C. L., Agarwal, S., et al. (2010). Alcohol, drugs, caffeine, tobacco, and environmental contaminant exposure: Reproductive health consequences and clinical implications. Critical Reviews in Toxicology., 40, 633–652.

    Article  CAS  PubMed  Google Scholar 

  75. Liu, L., Cash, T. P., Jones, R. G., et al. (2006). Hypoxia-induced energy stress regulates mRNA translation and cell growth. Molecular Cell, 21, 521–531.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wale, P. L., & Gardner, D. K. (2013) Oxygen affects the ability of mouse blastocysts to regulate ammonium. Biol Reprod.

  77. He, Y., Hakvoort, T. B., Vermeulen, J. L., et al. (2007). Glutamine synthetase is essential in early mouse embryogenesis. Developmental Dynamics, 236, 1865–1875.

    Article  CAS  PubMed  Google Scholar 

  78. Abecia, J. A., Forcada, F., Palacin, I., et al. (2015). Undernutrition affects embryo quality of superovulated ewes. Zygote, 23, 116–124.

    Article  CAS  PubMed  Google Scholar 

  79. Carro, E., Pinilla, L., Seoane, L. M., et al. (1997). Influence of endogenous leptin tone on the estrous cycle and luteinizing hormone pulsatility in female rats. Neuroendocrinology, 66, 375–377.

    Article  CAS  PubMed  Google Scholar 

  80. Nagatani, S., Bucholtz, D. C., Murahashi, K., et al. (1996). Reduction of glucose availability suppresses pulsatile luteinizing hormone release in female and male rats. Endocrinology, 137, 1166–1170.

    Article  CAS  PubMed  Google Scholar 

  81. Chen, P. Y., Ganguly, A., Rubbi, L., et al. (2013). Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiological Genomics, 45, 565–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gabory, A., Ferry, L., Fajardy, I., et al. (2012). Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PloS One, 7, e47986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gheorghe, C. P., Goyal, R., Holweger, J. D., et al. (2009). Placental gene expression responses to maternal protein restriction in the mouse. Placenta, 30, 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bhasin, K. K., van Nas, A., Martin, L. J., et al. (2009). Maternal low-protein diet or hypercholesterolemia reduces circulating essential amino acids and leads to intrauterine growth restriction. Diabetes, 58, 559–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Watkins, A. J., Lucas, E. S., Marfy-Smith, S., et al. (2015). Maternal nutrition modifies trophoblast giant cell phenotype and fetal growth in mice. Reproduction, 149, 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kawamura, K., Sato, N., Fukuda, J., et al. (2002). Leptin promotes the development of mouse preimplantation embryos in vitro. Endocrinology, 143, 1922–1931.

    Article  CAS  PubMed  Google Scholar 

  87. Bolnick, A., Abdulhasan, M., Kilburn, B., et al. (2016) Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. Journal of assisted reproduction and genetics.

  88. Burkus, J., Cikos, S., Fabian, D., et al. (2013). Maternal restraint stress negatively influences growth capacity of preimplantation mouse embryos. General Physiology and Biophysics, 32, 129–137.

    Article  PubMed  Google Scholar 

  89. Wallace, J. M., Aitken, R. P., Milne, J. S., et al. (2004) Nutritionally-mediated placental growth restriction in the growing adolescent: Consequences for the fetus. Biology of Reproduction.

  90. Wallace, J., Bourke, D., Da Silva, P., et al. (2001). Nutrient partitioning during adolescent pregnancy. Reproduction, 122, 347–357.

    Article  CAS  PubMed  Google Scholar 

  91. Wallace, J. M., Bourke, D. A., Da Silva, P., et al. (2003). Influence of progesterone supplementation during the first third of pregnancy on fetal and placental growth in overnourished adolescent ewes. Reproduction, 126, 481–487.

    Article  CAS  PubMed  Google Scholar 

  92. Scholl TO, Hediger, M. L., Schall, J. I., et al. (1994). Maternal growth during pregnancy and the competition for nutrients. The American Journal of Clinical Nutrition., 60, 183–188.

    PubMed  Google Scholar 

  93. Wallace JM, Luther JS, Milne JS et al. (2006) Nutritional modulation of adolescent pregnancy outcome -- a review. Placenta. 27 Suppl A:S61–S68.

  94. Carey, B. W., Finley, L. W., Cross, J. R., et al. (2015). Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 518, 413–416.

    Article  CAS  PubMed  Google Scholar 

  95. Vastenhouw, N. L., & Schier, A. F. (2012). Bivalent histone modifications in early embryogenesis. Current Opinion in Cell Biology, 24, 374–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, Q., Louden, E., Dai, J., et al. (2017). Stress forces first lineage differentiation of mouse ESCs, validation of a high throughput screen for toxicant stress. Submitted: Development.

    Google Scholar 

  97. Duch, A., Felipe-Abrio, I., Barroso, S., et al. (2013). Coordinated control of replication and transcription by a SAPK protects genomic integrity. Nature, 493, 116–119.

    Article  PubMed  Google Scholar 

  98. de Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews. Genetics, 12, 833–845.

    PubMed  Google Scholar 

  99. Cai, X., Hu, X., Tan, X., et al. (2015). Metformin induced AMPK activation, G0/G1 phase cell cycle arrest and the inhibition of growth of esophageal squamous cell carcinomas in vitro and in vivo. PloS One, 10, e0133349.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Igata, M., Motoshima, H., Tsuruzoe, K., et al. (2005). Adenosine monophosphate-activated protein kinase suppresses vascular smooth muscle cell proliferation through the inhibition of cell cycle progression. Circulation Research, 97, 837–844.

    Article  CAS  PubMed  Google Scholar 

  101. Pauklin, S., & Vallier, L. (2013). The cell-cycle state of stem cells determines cell fate propensity. Cell, 155, 135–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jang, J., Wang, Y., Lalli, M. A., et al. (2016). Primary cilium-autophagy-Nrf2 (PAN) Axis activation commits human embryonic stem cells to a Neuroectoderm fate. Cell, 165, 410–420.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Office of the Vice President for Research at Wayne State University, NIH (1R03HD061431) and the Kam Moghissi Endowed chair (EEP) and support for GCP and DR from NIH (P30 ES020957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rappolee.

Ethics declarations

Grants Support

This research was supported by grants to DAR from NIH (1R03HD061431) and from the Office of the Vice President for Research at Wayne State University.

Conflicts of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Bolnick, A., Shamir, A. et al. Blastocyst-Derived Stem Cell Populations under Stress: Impact of Nutrition and Metabolism on Stem Cell Potency Loss and Miscarriage. Stem Cell Rev and Rep 13, 454–464 (2017). https://doi.org/10.1007/s12015-017-9734-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9734-4

Keywords

Navigation