Skip to main content
Log in

Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adult mammalian heart is considered to be one of the least regenerative organs as it is not able to initiate endogenous regeneration in response to injury unlike in lower vertebrates and neonatal mammals. Evidence is now accumulating to suggest normal renewal and replacement of cardiomyocytes occurs even in middle-aged and old individuals. But underlying mechanisms leading to this are not yet clear. Do tissue-resident stem cells exist or somatic cells dedifferentiate leading to regeneration? Lot of attention is currently being focused on epicardium as it is involved in cardiac development, lodges multipotent progenitors and is a source of growth factors. Present study was undertaken to study the presence of stem cells in the pericardium. Intact adult mouse heart was subjected to partial enzymatic digestion to collect the pericardial cells dislodged from the surface. Pericardial cells suspension was processed to enrich the stem cells using our recently published protocol. Two populations of stem cells were successfully enriched from the pericardium of adult mouse heart along with distinct ‘cardiospheres’ with cytoplasmic continuity (formed by rapid proliferation and incomplete cytokinesis). These included very small embryonic-like stem cells (VSELs) and slightly bigger ‘progenitors’ cardiac stem cells (CSCs). Expression of pluripotent (Oct-4A, Sox-2, Nanog), primordial germ cells (Stella, Fragilis) and CSCs (Oct-4, Sca-1) specific transcripts was studied by RT-PCR. Stem cells expressed OCT-4, NANOG, SSEA-1, SCA-1 and c-KIT. c-KIT was expressed by cells of different sizes but only smaller CD45c-KIT+ VSELs possess regenerative potential. Inadvertent loss of stem cells while processing for different experiments has led to misperceptions & controversies existing in the field of cardiac stem cells and requires urgent rectification. VSELs/CSCs have the potential to regenerate damaged cardiac tissue in the presence of paracrine support provided by the mesenchymal stromal cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

All data and information generated from the study is provided in the text.

References

  1. Tzahor, E., & Poss, K. D. (2017). Cardiac regeneration strategies: Staying young at heart. Science, 356(6342), 1035–1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lázár, E., Sadek, H., & Bergmann, O. (2017). Cardiomyocyte renewal in the human heart: Insights form the fall-out. European Heart Journal, 38(30), 2333–2342.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Senyo, S. E., Steinhauser, M. L., Pizzimenti, C. L., Yang, V. K., Cai, L., Wang, M., Wu, T. D., Guerquin-Kern, J. L., Lechene, C. P., & Lee, R. T. (2013). Mammalian heart renewal by pre-existing cardiomyocytes. Nature, 493(7432), 433–436.

    Article  CAS  PubMed  Google Scholar 

  4. Asli, N. S., Xaymardan, M., & Harvey, R. P. (2017). Epicardial origin of resident mesenchymal stem cells in the adult mammalian heart. Journal of Developmental Biology, 2, 117–137.

    Article  Google Scholar 

  5. Aguilar-Sanchez, C., Michael, M., & Pennings, S. (2018). Cardiac stem cells in the postnatal heart: Lessons from development. Stem Cells International, 2018, 1–13. https://doi.org/10.1155/2018/1247857.

    Article  CAS  Google Scholar 

  6. Kruithof, B. P. T., Wijk, B. V., Somi, S., Julio, M. K., Pomares, J. M. P., et al. (2006). BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Developmental Biology, 295(2), 507–522.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, B., Ma, Q., Rajagopal, S., Wu, S. M., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S., Chien, K. R., & Pu, W. T. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature, 454(7200), 109–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smart, N., Bollini, S., Dubé, K. N., Vieira, J. M., Zhou, B., Davidson, S., Yellon, D., Riegler, J., Price, A. N., Lythgoe, M. F., Pu, W. T., & Riley, P. R. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474(7353), 640–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei, K., Serpooshan, V., Hurtado, C., Diez-Cuñado, M., Zhao, M., Maruyama, S., Zhu, W., Fajardo, G., Noseda, M., Nakamura, K., Tian, X., Liu, Q., Wang, A., Matsuura, Y., Bushway, P., Cai, W., Savchenko, A., Mahmoudi, M., Schneider, M. D., van den Hoff, M. J. B., Butte, M. J., Yang, P. C., Walsh, K., Zhou, B., Bernstein, D., Mercola, M., & Ruiz-Lozano, P. (2015). Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature, 525(7570), 479–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao, J., & Poss, K. (2018). The epicardium as a hub for heart regeneration. Nature Reviews. Cardiology, 15(10), 631–647.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Redpath, A. N., & Smart, N. (2020). Recapturing embryonic potential in the adult epicardium: Prospects for cardiac repair. Stem Cells Translational Medicine. https://doi.org/10.1002/sctm.20-0352.

  12. Bhartiya, D., & Patel, H. (2018). Ovarian stem cells-resolving controversies. Journal of Assisted Reproduction and Genetics, 35(3), 393–398.

    Article  PubMed  Google Scholar 

  13. Parte, S., Patel, H., Sriraman, K., & Bhartiya, D. (2015). Isolation and characterization of stem cells in the adult mammalian ovary. Methods in Molecular Biology, 1235, 203–229.

    Article  CAS  PubMed  Google Scholar 

  14. Sriraman, K., Bhartiya, D., Anand, S., & Bhutda, S. (2015). Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reproductive Sciences, 22(7), 884–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhartiya, D., Ali Mohammad, S., Guha, A., Singh, P., Sharma, D., & Kaushik, A. (2019). Evolving definition of adult stem/progenitor cells. Stem Cell Reviews and Reports, 15, 456–458.

    Article  PubMed  Google Scholar 

  16. Kaushik, A., & Bhartiya, D. (2020). Additional evidence to establish existence of two stem cell populations including VSELs and SSCs in adult mouse testes. Stem Cell Reviews and Reports, 16, 992–1004.

    Article  CAS  PubMed  Google Scholar 

  17. Mohammad, S. A., Metkari, S. M., & Bhartiya, D. (2020). Mouse pancreas stem/progenitor cells get augmented by streptozotocin and regenerate diabetic pancreas after partial pancreatectomy. Stem Cell Reviews and Reports, 16, 144–158.

    Article  PubMed  Google Scholar 

  18. Singh, P., & Bhartiya, D. (2020). Pluripotent stem (VSELs) and progenitor (EnSCs) cells exist in adult mouse uterus and show cyclic changes across estrus cycle. Reproductive Sciences, 28, 278–290. https://doi.org/10.1007/s43032-020-00250-2.

    Article  CAS  PubMed  Google Scholar 

  19. Patel, H., Bhartiya, D., & Parte, S. (2018). Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. Journal Ovarian Research, 11, 3.

    Article  Google Scholar 

  20. Bhartiya, D., Patel, H., Ganguly, R., Shaikh, A., Shukla, Y., Sharma, D., & Singh, P. (2018). Novel insights into adult and cancer stem cell biology. Stem Cells and Development, 27(22), 1527–1539.

    Article  PubMed  Google Scholar 

  21. Kretzschmar, K., Post, Y., Bannier-Hélaouët, M., Mattiotti, A., Drost, J., et al. (2018). Profiling proliferative cells and their progeny in damaged murine hearts. Proceedings of the National Academy of Sciences, 115(52), 12245–12254.

    Article  Google Scholar 

  22. Clevers, H., & Watt, F. M. (2018). Defining adult stem cells by function, not by phenotype. Annual Review of Biochemistry, 87, 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  23. Post, Y., & Clevers, H. (2019). Defining adult stem cell function at its simplest: The ability to replace lost cells through mitosis. Cell Stem Cell, 25(2), 174–183.

    Article  CAS  PubMed  Google Scholar 

  24. Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murata, K., Jadhav, U., Madha, S., van Es, J., Dean, J., Cavazza, A., Wucherpfennig, K., Michor, F., Clevers, H., & Shivdasani, R. A. (2020). Ascl2-dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell, 26(3), 377–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Y., Xiong, X., & Chen, Y.-G. (2020). Dedifferentiation: The return road to repair the intestinal epithelium. Cell Regen, 9(1), 2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leedham, S. J. (2020). Reserving the right to change the intestinal stem cell model. Cell Stem Cell, 26(3), 301–302.

    Article  CAS  PubMed  Google Scholar 

  28. Carvalho, J. (2020). Cell reversal from a differentiated to a stem-like state at cancer initiation. Frontiers in Oncology, 10, 541.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ratajczak, M. Z., Bujko, K., Mack, A., Kucia, M., & Ratajczak, J. (2018). Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia, 32(12), 2519–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaushik, A., Anand, S., & Bhartiya, D. (2020). Altered biology of testicular VSELs and SSCs by neonatal endocrine disruption results in defective spermatogenesis, reduced fertility and tumor initiation in adult mice. Stem Cell Reviews and Reports, 16(5), 893–908.

    Article  CAS  PubMed  Google Scholar 

  31. Bhartiya, D., Kausik, A., Singh, P., & Sharma, D. (2020). Will single-cell RNAseq decipher stem cells biology in normal and cancerous tissues? Human Reproduction Update. https://doi.org/10.1093/humupd/dmaa058.

  32. Bhartiya, D., & Sharma, D. (2020). Ovary does harbor stem cells - size of the cells matter! Journal Ovarian Research, 13, 39.

    Article  CAS  Google Scholar 

  33. Bhatiya, D. (2021). Adult tissue-resident stem cells- fact or fiction? Stem Cells Research and Therapy. https://doi.org/10.1186/s13287-021-02142-x.

  34. El-Helw, M., Chelvarajan, L., Abo-Aly, M., Soliman, M., Milburn, G., et al. (2020). Identification of human very small embryonic like stem cells (VSELS) in human heart tissue among young and old individuals. Stem Cell Reviews and Reports, 16, 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zuba-Surma, E. K., Kucia, M., Dawn, B., Guo, Y., Ratajczak, M. Z., & Bolli, R. (2008). Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44(5), 865–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., Paczkowska, E., Ciosek, J., Hałasa, M., Król, M., Kazmierski, M., Buszman, P., Ochała, A., Ratajczak, J., Machaliński, B., & Ratajczak, M. Z. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. Journal of the American College of Cardiology, 53(1), 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wojakowski, W., Kucia, M., Liu, R., Zuba-Surma, E., Jadczyk, T., Bachowski, R., Nabiałek, E., Kaźmierski, M., Ratajczak, M. Z., & Tendera, M. (2011). Circulating very small embryonic-like stem cells in cardiovascular disease. Journal of Cardiovascular Translational Research, 4(2), 138–144.

    Article  PubMed  Google Scholar 

  38. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs). Circulation Research, 124(2), 208–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Bhartiya, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews, 13(2), 202–216.

    Article  CAS  Google Scholar 

  40. Wojakowski, W., Tendera, M., Kucia, M., Zuba-Surma, E., & Milewski, K. (2010). Cardiomyocyte differentiation of bone marrow-derived Oct-4+CXCR4+SSEA-1+ very small embryonic-like stem cells. International Journal of Oncology, 37(2), 237–247.

    CAS  PubMed  Google Scholar 

  41. Marino, F., Scalise, M., Cianflone, E., Mancuso, T., Aquila, I., Agosti, V., Torella, M., Paolino, D., Mollace, V., Nadal-Ginard, B., & Torella, D. (2019). Role of c-kit in myocardial regeneration and aging. Frontiers in Endocrinology, 10, 371. https://doi.org/10.3389/fendo.2019.00371.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., & Li, B. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.

    Article  CAS  PubMed  Google Scholar 

  43. Orlic, D., Fischer, R., Nishikawa, S., Nienhuis, A. W., & Bodine, D. M. (1993). (1993). Purification and characterization of heterogeneous pluripotent hematopoietic stem cell populations expressing high levels of c-kit receptor. Blood., 82(3), 762–770.

    Article  CAS  PubMed  Google Scholar 

  44. van Berlo, J. H., Kanisicak, O., Maillet, M., Vagnozzi, R. J., Karch, J., Lin, S. C. J., Middleton, R. C., Marbán, E., & Molkentin, J. D. (2014). C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature., 509(7500), 337–341.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Smith, A. J., Lewis, F. C., Aquila, I., Waring, C. D., Nocera, A., Agosti, V., et al. (2014) Isolation and characterization of resident endogenous c-Kit+ cardiac stem cells from the adult mouse and rat heart. Nature Protocols, 9(7), 1662–1681.

  46. Liu, Q., Yang, R., Huang, X., Zhang, H., & He, L. (2016). Genetic lineage tracing identifies in situ kit-expressing cardiomyocytes. Cell Research, 26(1), 119–130.

    Article  CAS  PubMed  Google Scholar 

  47. Li, Y., He, L., Huang, X., Bhaloo, S. I., Zhao, H., Zhang, S., Pu, W., Tian, X., Li, Y., Liu, Q., Yu, W., Zhang, L., Liu, X., Liu, K., Tang, J., Zhang, H., Cai, D., Ralf, A. H., Xu, Q., Lui, K. O., & Zhou, B. (2018). Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation, 138(8), 793–805.

    Article  CAS  PubMed  Google Scholar 

  48. Chien, K. R., Frisén, J., Fritsche-Danielson, R., Melton, D. A., Murry, C. E., & Weissman, I. L. (2019). Regenerating the field of cardiovascular cell therapy. Nature Biotechnology, 37(3), 232–237.

    Article  CAS  PubMed  Google Scholar 

  49. Lüscher, T. F. (2019). Back to square one: The future of stem cell therapy and regenerative medicine after the recent events. European Heart Journal, 40(13), 1031–1033.

    Article  PubMed  Google Scholar 

  50. Ozkan, J. (2019). Piero Anversa and cardiomyocyte regeneration. European Heart Journal, 40(13), 1036–1037.

    Article  PubMed  Google Scholar 

  51. He, L., Nguyen, N. B., Ardehali, R., & Zhou, B. (2020). Heart regeneration by endogenous stem cells and cardiomyocyte proliferation: Controversy, fallacy, and progress. Circulation, 142(3), 275–291.

    Article  PubMed  Google Scholar 

  52. Bhartiya, D. (2019). Clinical translation of stem cells for regenerative medicine. Circulation Research, 124(6), 840–842.

    Article  CAS  PubMed  Google Scholar 

  53. Balbi, C., Costa, A., Barile, L., & Bollini, S. (2020). Message in a bottle: Upgrading cardiac repair into rejuvenation. Cells, 9(3), 724.

    Article  CAS  PubMed Central  Google Scholar 

  54. Cardoso, A. C., Pereira, A. H. M., & Sadek, H. A. (2020). Mechanisms of neonatal heart regeneration. Current Cardiology ReportsCurrent Cardiology Reports, 22(5), 33.

    Article  Google Scholar 

  55. Sadek, H., & Olson, E. N. (2020). Toward the goal of human heart regeneration. Cell Stem Cell, 26(1), 7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Witman, N., Zhou, C., Beverborg, N. G., Sahara, M., & Chien, K. R. (2020). Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Seminars in Cell & Developmental Biology, 100, 29–51.

    Article  Google Scholar 

  57. Guo, Y., & Pu, W. T. (2020). Cardiomyocyte maturation: New phase in development. Circulation Research, 126(8), 1086–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo, Y., Yu, Y., Hu, S., Chen, Y., & Shen, Z. (2020). The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death & Disease, 11(5), 349. https://doi.org/10.1038/s41419-020-2542-9.

    Article  Google Scholar 

  59. Tsiapalis, D., & O’Driscoll, L. (2020). Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells., 9(4), 991. https://doi.org/10.3390/cells9040991.

    Article  CAS  PubMed Central  Google Scholar 

  60. Balbi, C., & Vassalli, G. (2020). Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells, 38(11), 1387–1399.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge published work of all colleagues working on VSELs towards cardiac repair.

Funding

Core support provided to the lab by Indian Council of medical Research, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

DB conceptualized and planned the study, data interpretation and wrote the manuscript. YF performed all the experiments with help from DS and SAM. All authors read and approved the manuscript.

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Ethical Approval

Study was approved by Institute Animal Ethics Committee (IAEC) at NIRRH.

Consent to Participate

Not applicable as it is not a clinical study.

Consent to Publish

NIRRH manuscript number: RA/967/09–2020.

Competing Interests

We have no competing interests whatsoever.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhartiya, D., Flora, Y., Sharma, D. et al. Two Stem Cell Populations Including VSELs and CSCs Detected in the Pericardium of Adult Mouse Heart. Stem Cell Rev and Rep 17, 685–693 (2021). https://doi.org/10.1007/s12015-021-10119-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10119-9

Keywords

Navigation