Skip to main content

Advertisement

Log in

Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α-Syn:

Alpha-synuclein

AD:

Alzheimer’s disease

Aβ:

Amyloid beta protein

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APP:

Amyloid precursor proteins

APPL:

Adaptor protein phosphotyrosine interacting with PH domain and leucine zipper

BBSome:

Bardet–Biedl syndrome

BDNF:

Brain-derived neurotropic factor

CAG:

Triplet nucleotide codes for glutamine

CCV:

Clathrin-coated vesicles

CMTB:

Charcot–Marie–Tooth-type 2B

CRD:

Cone-rod dystrophy

CR:

Carpenter syndrome

DA:

Dopamine

DENN:

Differentially expressed in normal and neoplastic cells

EE:

Early endosomes

EEA1:

Early endosome adapter1

EAAC1:

Glutamate/cysteine transporter

ER:

Endoplasmic reticulum

GAP:

GTP hydrolysis activator protein

GC:

Golgi complex

GDP:

Guanosine diphosphate

GEF:

Guanine nucleotide exchange factor

GLUT:

Glucose transporter

GTP:

Guanosine triphosphate

GS:

Griscelli syndrome

GSH:

Glutathione

HD:

Huntington’s disease

Hh:

Hedgehog

HTT:

Huntingtin protein

IFT:

Intraflagellar transport

LBD:

Lewy body disease

LE:

Late endosome

LRRK:

Leucine-rich repeat kinase 2

LTP:

Long-term potentiation

LTD:

Long-term depression

MAM:

Mitochondria-associated membranes

mHTT:

Mutant Huntingtin protein

MS:

Martsolf syndrome

MSN:

Medium spiny neurons

NMDA:

N-acetyl d-aspartate

NMDAR:

N-acetyl d-aspartate receptor

NSF:

N-ethylmaleimide-sensitive factor

PD:

Parkinson’s disease

polyQ:

Polyglutamine

PSEN-1:

Presenilin-1

Rab-GDI:

Rab-interacting protein GDP-dissociation inhibitor

REP:

Rab escort protein

RPE:

Retinal pigment epithelium

Rab:

Ras genes from rat brain

RBP3A:

Rab3A effector Rabphilin-3A

RE:

Recycling endosome

SNpc:

Substantia nigra pars compacta

SV:

Synaptic vesicle

TGN:

Trans-Golgi network

TMEM230:

Transmembrane protein 230

TrkB:

Tyrosine kinase-B

t-SNARE:

Target-soluble NSF attachment protein receptor

VAMP:

Vesicle associated membrane protein

v-SNARE:

Vesicle-soluble NSF attachment protein receptor

WMS:

Warburg-microsyndrome

Ypt:

Yeast-related protein

References

  • Ali, B. R., et al. (2004). Multiple regions contribute to membrane targeting of Rab GTPases. Journal of Cell Science, 117(Pt 26), 6401–6412.

    Article  CAS  PubMed  Google Scholar 

  • Aligianis, I. A., et al. (2005). Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nature Genetics, 37(3), 221–223.

    Article  CAS  PubMed  Google Scholar 

  • Aloisi, A. L., & Bucci, C. (2013). Rab GTPases-cargo direct interactions: Fine modulators of intracellular trafficking. Histology and Histopathology, 28(7), 839–849.

    CAS  PubMed  Google Scholar 

  • Ang, A. L., et al. (2003). The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. Journal of Cell Biology, 163(2), 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura, N., et al. (2009). Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Developmental Cell, 16(5), 675–686.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, A., et al. (2014). Lysosomal network proteins as potential novel CSF biomarkers for Alzheimer’s disease. NeuroMolecular Medicine, 16(1), 150–160.

    Article  CAS  PubMed  Google Scholar 

  • Arriagada, C., et al. (2007). Endosomal abnormalities related to amyloid precursor protein in cholesterol treated cerebral cortex neuronal cells derived from trisomy 16 mice, an animal model of Down syndrome. Neuroscience Letters, 423(2), 172–177.

    Article  CAS  PubMed  Google Scholar 

  • Arriagada, C., et al. (2010). Apoptosis is directly related to intracellular amyloid accumulation in a cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down syndrome. Neuroscience Letters, 470(1), 81–85.

    Article  CAS  PubMed  Google Scholar 

  • Babbey, C. M., Bacallao, R. L., & Dunn, K. W. (2010). Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells. American Journal of Physiology-Renal Physiology, 299(3), F495–F506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldini, G., et al. (1992). Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proceedings of the National Academy of Sciences, 89(11), 5049–5052.

    Article  CAS  Google Scholar 

  • Barr, F. A. (2013). Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biology, 202(2), 191–199.

    Article  CAS  Google Scholar 

  • Binotti, B., Jahn, R., & Chua, J. J. (2016). Functions of rab proteins at presynaptic sites. Cells, 5(1), 7.

    Article  PubMed Central  Google Scholar 

  • Binotti, B., et al. (2015). The GTPase Rab26 links synaptic vesicles to the autophagy pathway. Elife, 4, e05597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumer, J., et al. (2013). RabGEFs are a major determinant for specific Rab membrane targeting. J Cell Biology., 200(3), 287–300.

    Article  CAS  Google Scholar 

  • Bonifacino, J. S., & Glick, B. S. (2004). The mechanisms of vesicle budding and fusion. Cell, 116(2), 153–166.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T. C., et al. (2005). NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron, 45(1), 81–94.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T. C., et al. (2007). Functional compartmentalization of endosomal trafficking for the synaptic delivery of AMPA receptors during long-term potentiation. Journal of Neuroscience, 27(48), 13311–13315.

    Article  CAS  PubMed  Google Scholar 

  • Bucci, C., Alifano, P., & Cogli, L. (2014). The role of rab proteins in neuronal cells and in the trafficking of neurotrophin receptors. Membranes (Basel)., 4(4), 642–677.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucci, C., & Chiariello, M. (2006). Signal transduction gRABs attention. Cellular Signalling, 18(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bui, M., et al. (2010). Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. Journal of Biological Chemistry, 285(41), 31590–31602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter, G. (1909). Acrocephaly, with other congenital malformations. Proc R Soc Med, 2(Sect Study Dis Child), 45–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casey, P. J., & Seabra, M. C. (1996). Protein prenyltransferases. Journal of Biological Chemistry, 271(10), 5289–5292.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, P. E., et al. (1997). Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature, 388(6642), 590–593.

    Article  CAS  PubMed  Google Scholar 

  • Chavrier, P., et al. (1990). Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell, 62(2), 317–329.

    Article  CAS  PubMed  Google Scholar 

  • Chavrier, P., et al. (1991). Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature, 353(6346), 769–772.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W., et al. (1998). Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor. Molecular Biology of the Cell, 9(11), 3241–3257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman, W. L., Bill, C. A., & Bykhovskaia, M. (2007). Rab3a deletion reduces vesicle docking and transmitter release at the mouse diaphragm synapse. Neuroscience, 148(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Coppola, T., et al. (2001). Direct interaction of the Rab3 effector RIM with Ca2 + channels, SNAP-25, and synaptotagmin. Journal of Biological Chemistry, 276(35), 32756–32762.

    Article  CAS  PubMed  Google Scholar 

  • Dalfo, E., et al. (2004). Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiology of Diseases, 16(1), 92–97.

    Article  CAS  Google Scholar 

  • de Renzis, S., Sonnichsen, B., & Zerial, M. (2002). Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell Biology, 4(2), 124–133.

    Article  PubMed  CAS  Google Scholar 

  • Deak, F., et al. (2006). Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO Journal, 25(12), 2856–2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deretic, D., & Papermaster, D. S. (1993). Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. Journal of Cell Science, 106(Pt 3), 803–813.

    CAS  PubMed  Google Scholar 

  • Deretic, D., et al. (1995). rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis. Journal of Cell Science, 108(Pt 1), 215–224.

    CAS  PubMed  Google Scholar 

  • Di Giovanni, S., et al. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO Journal, 25(17), 4084–4096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Paolo, G., & De Camilli, P. (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112), 651–657.

    Article  PubMed  CAS  Google Scholar 

  • Diekmann, Y., et al. (2011). Thousands of rab GTPases for the cell biologist. PLoS Computational Biology, 7(10), e1002217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echard, A., et al. (1998). Interaction of a Golgi-associated kinesin-like protein with Rab6. Science, 279(5350), 580–585.

    Article  CAS  PubMed  Google Scholar 

  • Eggenschwiler, J. T., et al. (2006). Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. Development Biology, 290(1), 1–12.

    Article  CAS  Google Scholar 

  • Elias, M., et al. (2012). Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. Journal of Cell Science, 125(Pt 10), 2500–2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin, D. L., et al. (2004). Lipid rafts mediate the synaptic localization of alpha-synuclein. Journal of Neuroscience, 24(30), 6715–6723.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, M. (2003). Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. Journal of Biological Chemistry, 278(17), 15373–15380.

    Article  CAS  PubMed  Google Scholar 

  • Furusawa, K., et al. (2017). Cdk5 Regulation of the GRAB-Mediated Rab8–Rab11 Cascade in Axon Outgrowth. Journal of Neuroscience, 37(4), 790–806.

    Article  CAS  PubMed  Google Scholar 

  • Gallwitz, D., Donath, C., & Sander, C. (1983). A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature, 306(5944), 704–707.

    Article  CAS  PubMed  Google Scholar 

  • Gerges, N. Z., Backos, D. S., & Esteban, J. A. (2004). Local control of AMPA receptor trafficking at the postsynaptic terminal by a small GTPase of the Rab family. Journal of Biological Chemistry, 279(42), 43870–43878.

    Article  CAS  PubMed  Google Scholar 

  • Gerondopoulos, A., et al. (2012). BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Current Biology, 22(22), 2135–2139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghavami, S., et al. (2014). Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology, 112, 24–49.

    Article  CAS  PubMed  Google Scholar 

  • Giannandrea, M., et al. (2010). Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. The American Journal of Human Genetics, 86(2), 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Goldenring, J. R., et al. (1996). Rab11 is an apically located small GTP-binding protein in epithelial tissues. American Journal of Physiology, 270(3 Pt 1), G515–G525.

    CAS  PubMed  Google Scholar 

  • Goody, R. S., Rak, A., & Alexandrov, K. (2005). The structural and mechanistic basis for recycling of Rab proteins between membrane compartments. Cellular and Molecular Life Sciences, 62(15), 1657–1670.

    Article  CAS  PubMed  Google Scholar 

  • Griscelli, C., & Prunieras, M. (1978). Pigment dilution and immunodeficiency: A new syndrome. International Journal of Dermatology, 17(10), 788–791.

    Article  CAS  PubMed  Google Scholar 

  • Gurkan, C., et al. (2005). Large-scale profiling of Rab GTPase trafficking networks: The membrome. Molecular Biology of the Cell, 16(8), 3847–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, C., et al. (2016). Epileptic encephalopathy caused by mutations in the guanine nucleotide exchange factor DENND5A. The American Journal of Human Genetics, 99(6), 1359–1367.

    Article  CAS  PubMed  Google Scholar 

  • Handley, M. T., et al. (2013). Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Human Mutation, 34(5), 686–696.

    Article  CAS  PubMed  Google Scholar 

  • Huber, L. A., et al. (1993). Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. Journal of Cell Biology, 123(1), 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Hutagalung, A. H., & Novick, P. J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiology Review, 91(1), 119–149.

    Article  CAS  Google Scholar 

  • Imarisio, S., et al. (2008). Huntington’s disease: From pathology and genetics to potential therapies. Biochemical Journal, 412(2), 191–209.

    Article  CAS  PubMed  Google Scholar 

  • Jahn, R., & Scheller, R. H. (2006). SNAREs–engines for membrane fusion. Nature Reviews Molecular Cell Biology, 7(9), 631–643.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, D., et al. (2007). RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. American Journal of Human Genetics, 80(6), 1162–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, V. L., et al. (2016). Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genetics, 12(12), e1006469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong, K., et al. (2012). Rab6-mediated retrograde transport regulates inner nuclear membrane targeting of caveolin-2 in response to insulin. Traffic., 13(9), 1218–1233.

    Article  CAS  PubMed  Google Scholar 

  • Jordens, I., et al. (2001). The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Current Biology, 11(21), 1680–1685.

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi, T., et al. (2010). Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron, 67(4), 588–602.

    Article  CAS  PubMed  Google Scholar 

  • Klein, C., et al. (1994). Partial albinism with immunodeficiency (Griscelli syndrome). Journal of Pediatrics, 125(6 Pt 1), 886–895.

    Article  CAS  PubMed  Google Scholar 

  • Knodler, A., et al. (2010). Coordination of Rab8 and Rab11 in primary ciliogenesis. Proceedings of the National Academy of Sciences, 107(14), 6346–6351.

    Article  CAS  Google Scholar 

  • Kontopoulos, E., Parvin, J. D., & Feany, M. B. (2006). Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Human Molecular Genetics, 15(20), 3012–3023.

    Article  CAS  PubMed  Google Scholar 

  • Kubo, S., et al. (2005). A combinatorial code for the interaction of alpha-synuclein with membranes. Journal of Biological Chemistry, 280(36), 31664–31672.

    Article  CAS  PubMed  Google Scholar 

  • Lane, K. T., & Beese, L. S. (2006). Thematic review series: Lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. Journal of Lipid Research, 47(4), 681–699.

    Article  CAS  PubMed  Google Scholar 

  • Lanzetti, L., et al. (2000). The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature, 408(6810), 374–377.

    Article  CAS  PubMed  Google Scholar 

  • Larijani, B., et al. (2003). Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases. Journal of Biological Chemistry, 278(47), 46798–46804.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H. J., Patel, S., & Lee, S. J. (2005). Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. Journal of Neuroscience, 25(25), 6016–6024.

    Article  CAS  PubMed  Google Scholar 

  • Lee, G. I., et al. (2017). A novel likely pathogenic variant in the RAB28 gene in a Korean patient with cone-rod dystrophy. Ophthalmic Genetics, 38(6), 587–589.

    Article  CAS  PubMed  Google Scholar 

  • Leung, K. F., Baron, R., & Seabra, M. C. (2006). Thematic review series: Lipid posttranslational modifications. Geranylgeranylation of Rab GTPases. Journal of Lipid Research, 47(3), 467–475.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., & DiFiglia, M. (2012). The recycling endosome and its role in neurological disorders. Progress in Neurobiology, 97(2), 127–141.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., & Stahl, P. D. (1993). Structure-function relationship of the small GTPase rab5. Journal of Biological Chemistry, 268(32), 24475–24480.

    CAS  PubMed  Google Scholar 

  • Li, X., et al. (2008). A function of huntingtin in guanine nucleotide exchange on Rab11. NeuroReport, 19(16), 1643–1647.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., et al. (2009). Disruption of Rab11 activity in a knock-in mouse model of Huntington’s disease. Neurobiology of Diseases, 36(2), 374–383.

    Article  CAS  Google Scholar 

  • Lim, Y. S., Chua, C. E., & Tang, B. L. (2011). Rabs and other small GTPases in ciliary transport. Biol ogy of the Cell, 103(5), 209–221.

    Article  CAS  Google Scholar 

  • Lim, Y. S., & Tang, B. L. (2015). A role for Rab23 in the trafficking of Kif17 to the primary cilium. Journal of Cell Science, 128(16), 2996–3008.

    Article  CAS  PubMed  Google Scholar 

  • Maiti, P., et al., Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. Biomed Res Int. 2014: p. 495091.

  • Mallard, F., et al. (2002). Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. Journal of Cell Biology, 156(4), 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maltese, W. A. (1990). Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J, 4(15), 3319–3328.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, O., & Goud, B. (1998). Rab proteins. Biochimica et Biophysica Acta, 1404(1–2), 101–112.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, O., et al. (1994). The small GTP-binding protein rab6 functions in intra-Golgi transport. Journal of Cell Biology, 127(6 Pt 1), 1575–1588.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, Y., et al. (1988). Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25,000 from bovine brain. Journal of Biological Chemistry, 263(23), 11071–11074.

    CAS  PubMed  Google Scholar 

  • McCaffrey, M. W., et al. (2001). Rab4 affects both recycling and degradative endosomal trafficking. FEBS Letters, 495(1–2), 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Meggouh, F., et al. (2006). Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene. Neurology, 67(8), 1476–1478.

    Article  CAS  PubMed  Google Scholar 

  • Menasche, G., et al. (2000). Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nature Genetics, 25(2), 173–176.

    Article  CAS  PubMed  Google Scholar 

  • Mesaki, K., et al. (2011). Fission of tubular endosomes triggers endosomal acidification and movement. PLoS ONE, 6(5), e19764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miaczynska, M., et al. (2004). APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell, 116(3), 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi, A., et al. (1990). Localization and subcellular distribution of smg p25A, a ras p21-like GTP-binding protein, in rat brain. Journal of Biological Chemistry, 265(20), 11872–11879.

    CAS  PubMed  Google Scholar 

  • Mizuno-Yamasaki, E., Rivera-Molina, F., & Novick, P. (2012). GTPase networks in membrane traffic. Annual Review of Biochemistry, 81, 637–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori, Y., Fukuda, M., & Henley, J. M. (2014). Small GTPase Rab17 regulates the surface expression of kainate receptors but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in hippocampal neurons via dendritic trafficking of Syntaxin-4 protein. Journal of Biological Chemistry, 289(30), 20773–20787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz, O. L., et al. (2001). Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods. Molecular Biology of the Cell, 12(8), 2341–2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motoike, T., et al. (1990). Expression of smg p25A, a ras p21-like small GTP-binding protein, during postnatal development of rat cerebellum. Brain Research. Developmental Brain Research, 57(2), 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Munro, S. (2002). Organelle identity and the targeting of peripheral membrane proteins. Current Opinion in Cell Biology, 14(4), 506–514.

    Article  CAS  PubMed  Google Scholar 

  • Nachury, M. V., et al. (2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell, 129(6), 1201–1213.

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa, H., et al. (2012). Rab33a mediates anterograde vesicular transport for membrane exocytosis and axon outgrowth. Journal of Neuroscience, 32(37), 12712–12725.

    Article  CAS  PubMed  Google Scholar 

  • Nixon, R. A. (2007). Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science, 120(Pt 23), 4081–4091.

    Article  CAS  PubMed  Google Scholar 

  • Novick, P., & Zerial, M. (1997). The diversity of Rab proteins in vesicle transport. Current Opinion in Cell Biology, 9(4), 496–504.

    Article  CAS  PubMed  Google Scholar 

  • Onnis, A., et al. (2015). The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis. Cell Death and Differentiation, 22(10), 1687–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opdam, F. J., et al. (2000). The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. Journal of Cell Science, 113(Pt 15), 2725–2735.

    CAS  PubMed  Google Scholar 

  • Ostermeier, C., & Brunger, A. T. (1999). Structural basis of Rab effector specificity: Crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell, 96(3), 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Park, M., et al. (2004). Recycling endosomes supply AMPA receptors for LTP. Science, 305(5692), 1972–1975.

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Leal, J. B., & Seabra, M. C. (2001). Evolution of the Rab family of small GTP-binding proteins. Journal of Molecular Biology, 313(4), 889–901.

    Article  CAS  PubMed  Google Scholar 

  • Perez, R. G., Squazzo, S. L., & Koo, E. H. (1996). Enhanced release of amyloid beta-protein from codon 670/671 “Swedish” mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. Journal of Biological Chemistry, 271(15), 9100–9107.

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer, S. R. (2001). Rab GTPases: Specifying and deciphering organelle identity and function. Trends in Cell Biology, 11(12), 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer, S. R. (2013). Rab GTPase regulation of membrane identity. Current Opinion in Cell Biology, 25(4), 414–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plutner, H., et al. (1991). Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. Journal of Cell Biology, 115(1), 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Poirier, M. A., et al. (1998). The synaptic SNARE complex is a parallel four-stranded helical bundle. Natural Structural Biology, 5(9), 765–769.

    Article  CAS  Google Scholar 

  • Ponomareva, O. Y., Eliceiri, K. W., & Halloran, M. C. (2016). Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Development, 11, 2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pylypenko, O., et al. (2006). Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO Journal, 25(1), 13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar, B., et al. (2008). Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. Journal of Cell Science, 121(Pt 10), 1649–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reish, N. J., et al. (2014). Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin. Journal of Neuroscience, 34(45), 14854–14863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ridge, P.G., M.T. Ebbert, and J.S. Kauwe, Genetics of Alzheimer’s disease. Biomed Res Int. 2013: p. 254954.

  • Rink, J., et al. (2005). Rab conversion as a mechanism of progression from early to late endosomes. Cell, 122(5), 735–749.

    Article  CAS  PubMed  Google Scholar 

  • Roosing, S., et al. (2013). Mutations in RAB28, encoding a farnesylated small GTPase, are associated with autosomal-recessive cone-rod dystrophy. American Journal of Human Genetics, 93(1), 110–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahlender, D. A., et al. (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. Journal of Cell Biology, 169(2), 285–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakane, A., Honda, K., & Sasaki, T. (2010). Rab13 regulates neurite outgrowth in PC12 cells through its effector protein, JRAB/MICAL-L2. Molecular and Cellular Biology, 30(4), 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., et al. (2014). Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J Cell Science, 127(Pt 2), 422–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheper, W., Zwart, R., & Baas, F. (2004). Rab6 membrane association is dependent of Presenilin 1 and cellular phosphorylation events. Brain Research. Molecular Brain Research, 122(1), 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2004). Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nature Cell Biology, 6(11), 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  • Shetty, K. M., Kurada, P., & O’Tousa, J. E. (1998). Rab6 regulation of rhodopsin transport in Drosophila. Journal of Biological Chemistry, 273(32), 20425–20430.

    Article  CAS  PubMed  Google Scholar 

  • Shirane, M., & Nakayama, K. I. (2006). Protrudin induces neurite formation by directional membrane trafficking. Science, 314(5800), 818–821.

    Article  CAS  PubMed  Google Scholar 

  • Siniossoglou, S., & Pelham, H. R. (2001). An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO Journal, 20(21), 5991–5998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini, M. G., & Goedert, M. (2000). The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Annals of the New York Academy of Sciences, 920, 16–27.

    Article  CAS  PubMed  Google Scholar 

  • Spillantini, M. G., et al. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840.

    Article  CAS  PubMed  Google Scholar 

  • Spillantini, M. G., et al. (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A, 95(11), 6469–6473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafstrom, C. E., & Carmant, L. (2015). Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb Perspect Med., 5(6), a002426.

    Article  Google Scholar 

  • Star, E. N., Newton, A. J., & Murthy, V. N. (2005). Real-time imaging of Rab3a and Rab5a reveals differential roles in presynaptic function. Journal of Physiology, 569(Pt 1), 103–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology, 10(8), 513–525.

    Article  CAS  PubMed  Google Scholar 

  • Stenmark, H., et al. (1994). Distinct structural elements of rab5 define its functional specificity. EMBO Journal, 13(3), 575–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumakovic, M., et al. (2009). UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in Caenorhabditis elegans. Journal of Cell Biology, 186(6), 897–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton, R. B., et al. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature, 395(6700), 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Syed, N., et al. (2001). Evaluation of retinal photoreceptors and pigment epithelium in a female carrier of choroideremia. Ophthalmology, 108(4), 711–720.

    Article  CAS  PubMed  Google Scholar 

  • Szatmari, Z., & Sass, M. (2014). The autophagic roles of Rab small GTPases and their upstream regulators: A review. Autophagy, 10(7), 1154–1166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szodorai, A., et al. (2009). APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle. Journal of Neuroscience, 29(46), 14534–14544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, S., et al. (2011). Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J Cell Science, 125(Pt 17), 4049–4057.

    Google Scholar 

  • Takamori, S., et al. (2006). Molecular anatomy of a trafficking organelle. Cell, 127(4), 831–846.

    Article  CAS  PubMed  Google Scholar 

  • Takano, T., et al. (2012). LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. Journal of Neuroscience, 32(19), 6587–6599.

    Article  CAS  PubMed  Google Scholar 

  • Tam, J. H., Seah, C., & Pasternak, S. H. (2014). The amyloid precursor protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Molecular Brain, 7, 54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan, M. G., et al. (2014). Decreased rabphilin 3A immunoreactivity in Alzheimer’s disease is associated with Abeta burden. Neurochemistry International, 64, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Temtamy, S. A. (1966). Carpenter’s syndrome: Acrocephalopolysyndactyly. An autosomal recessive syndrome. J Pediatr, 69(1), 111–120.

    CAS  PubMed  Google Scholar 

  • Tisdale, E. J., et al. (1992). GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. Journal of Cell Biology, 119(4), 749–761.

    Article  CAS  PubMed  Google Scholar 

  • Tobin, J. L., & Beales, P. L. (2009). The nonmotile ciliopathies. Genetics in Medicine, 11(6), 386–402.

    Article  CAS  PubMed  Google Scholar 

  • Tolmachova, T., et al. (2006). Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. The Journal of Clinical Investigation, 116(2), 386–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touchot, N., Chardin, P., & Tavitian, A. (1987). Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: Molecular cloning of YPT-related cDNAs from a rat brain library. Proceedings of the National Academy of Sciences, 84(23), 8210–8214.

    Article  CAS  Google Scholar 

  • Udayar, V., et al. (2013). A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of beta-amyloid production. Cell Reports, 5(6), 1536–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullrich, O., et al. (1996). Rab11 regulates recycling through the pericentriolar recycling endosome. Journal of Cell Biology, 135(4), 913–924.

    Article  CAS  PubMed  Google Scholar 

  • Urbe, S., et al. (1993). Rab11, a small GTPase associated with both constitutive and regulated secretory pathways in PC12 cells. FEBS Letters, 334(2), 175–182.

    Article  CAS  PubMed  Google Scholar 

  • van den Hurk, J. A., et al. (1997). Molecular basis of choroideremia (CHM): Mutations involving the Rab escort protein-1 (REP-1) gene. Human Mutation, 9(2), 110–117.

    Article  PubMed  Google Scholar 

  • Vetter, I. R., & Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294(5545), 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  • Villarroel-Campos, D., et al. (2016). Rab35 functions in axon elongation are regulated by P53-related protein kinase in a mechanism that involves Rab35 protein degradation and the microtubule-associated protein 1B. Journal of Neuroscience, 36(27), 7298–7313.

    Article  CAS  PubMed  Google Scholar 

  • Vonderheit, A., & Helenius, A. (2005). Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biology, 3(7), e233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker, F. O. (2007). Huntington’s disease. Lancet, 369(9557), 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., et al. (2011). Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Developmental Cell, 21(3), 431–444.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., et al. (2015). Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling. Proceedings of the National Academy of Sciences, 112(1), 148–153.

    Article  CAS  Google Scholar 

  • Wanschers, B. F., et al. (2007). A role for the Rab6B Bicaudal-D1 interaction in retrograde transport in neuronal cells. Experimental Cell Research, 313(16), 3408–3420.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, S. M., et al. (2000). A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proceedings of the National Academy of Sciences, 97(14), 7933–7938.

    Article  CAS  Google Scholar 

  • Wilson, G. R., et al. (2014). Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. The American Journal of Human Genetics, 95(6), 729–735.

    Article  CAS  Google Scholar 

  • Wu, F., & Yao, P. J. (2009). Clathrin-mediated endocytosis and Alzheimer’s disease: An update. Ageing Res Rev, 8(3), 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., et al. (2002). Rab27a is an essential component of melanosome receptor for myosin Va. Molecular Biology of the Cell, 13(5), 1735–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wucherpfennig, T., Wilsch-Brauninger, M., & Gonzalez-Gaitan, M. (2003). Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. Journal of Cell Biology, 161(3), 609–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., et al. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura, S., et al. (2007). Functional dissection of Rab GTPases involved in primary cilium formation. Journal of Cell Biology, 178(3), 363–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2(2), 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

S.V. acknowledges the support of Dr. A. Ajayaghosh, Director, CSIR-NIIST, during the preparation of this manuscript. Ms. Swapna U Sasi is acknowledged for help on initial version of the manuscript.

Funding

S.V. and P.P. acknowledge Department of Biotechnology, Ministry of Science and Technology, Government of India for financial supports as DBT-Ramalingaswami Re-entry Fellows: S.V.: SAN No.102/IFD/SAN/351/2016-14 dated May 5, 2016; and P.P: No. BT/RLF/Re-entry/04/2012. PP is also supported by DBT grant No. BT/PR10968/MED/30/1326/2014.

Author information

Authors and Affiliations

Authors

Contributions

S.V. conceived the review and the figures. P.M. contributed on neurodegenerative diseases and edited the manuscript. P.P. contributed the neurotransmitter receptors part and edited the manuscript. G.L.D. helped edit the later drafts of the manuscripts.

Corresponding author

Correspondence to Shobi Veleri.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veleri, S., Punnakkal, P., Dunbar, G.L. et al. Molecular Insights into the Roles of Rab Proteins in Intracellular Dynamics and Neurodegenerative Diseases. Neuromol Med 20, 18–36 (2018). https://doi.org/10.1007/s12017-018-8479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-018-8479-9

Keywords

Navigation