Skip to main content

Advertisement

Log in

Hyperglycemia induced by tacrolimus and sirolimus is reversible in normal sprague–dawley rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Post-transplant diabetes mellitus (PTDM) worsens outcomes after kidney transplantation, and immunosuppression agents contribute to PTDM. We have previously shown that tacrolimus (TAC) and sirolimus (SIR) cause hyperglycemia in normal rats. While there is little data on the mechanism for immunosuppressant-induced hyperglycemia, we hypothesized that the TAC and SIR-induced changes are reversible. To study this possibility, we compared normal rats treated for 2 weeks with either TAC, SIR, or a combination of TAC and SIR prior to evaluating their response to glucose challenge, with parallel groups also treated for 2 weeks after which treatment was stopped for 4 weeks, prior to studying their response to glucose challenge. Mean daily glucose and growth velocity was decreased in SIR, and TAC+SIR-treated animals compared to controls (P < 0.05). TAC, SIR, and TAC+SIR treatment also resulted in increased glucose response to glucose challenge, compared to controls (P < 0.05). SIR-treated animals also had elevated insulin concentrations in response to glucose challenge, compared to controls (P < 0.05). Insulin content was decreased in TAC and TAC+SIR, and islet apoptosis was also increased after TAC+SIR treatment (P < 0.05). Four weeks after treatments were stopped, all differences resolved between groups. In conclusion, TAC, SIR, and the combination of TAC+SIR-induced changes in glucose and insulin responses to glucose challenge that were accompanied by changes in islet apoptosis and insulin content. These changes were no longer present 4 weeks after cessation of therapy suggesting immunosuppressant-induced changes in glucose metabolism are likely reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Hjelmesaeth, A. Hartmann, T. Leivestad, H. Holdaas, S. Sagedal, M. Olstad et al., The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int. 69(3), 588–595 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. J. Davidson, A. Wilkinson, J. Dantal, F. Dotta, H. Haller, D. Hernandez et al. New-onset diabetes after transplantation: 2003 International consensus guidelines. in Proceedings of an International Expert Panel Meeting, Barcelona, Spain, 19 February 2003. Transplantation 75(10 Suppl), SS3–24 (2003)

  3. E. Sulanc, J.T. Lane, S.E. Puumala, G.C. Groggel, L.E. Wrenshall, R.B. Stevens, New-onset diabetes after kidney transplantation: an application of 2003 international guidelines. Transplantation 80(7), 945–952 (2005)

    Article  PubMed  Google Scholar 

  4. J.L. Larsen, R.G. Bennett, T. Burkman, A.L. Ramirez, S. Yamamoto, J. Gulizia et al., Tacrolimus and sirolimus cause insulin resistance in normal sprague dawley rats. Transplantation 82(4), 466–470 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. L. Ghisdal, N.B. Bouchta, N. Broeders, L. Crenier, A.D. Hoang, D. Abramowicz et al., Conversion from tacrolimus to cyclosporine A for new-onset diabetes after transplantation: a single-centre experience in renal transplanted patients and review of the literature. Transpl. Int. 21(2), 146–151 (2008)

    CAS  PubMed  Google Scholar 

  6. M. Ramos-Cebrian, J.V. Torregrosa, A. Gutierrez-Dalmau, F. Oppenheimer, J.M. Campistol, Conversion from tacrolimus to cyclosporine could improve control of posttransplant diabetes mellitus after renal transplantation. Transplant. Proc. 39(7), 2251–2253 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Randomised trial comparing tacrolimus (FK506) and cyclosporin in prevention of liver allograft rejection. European FK506 Multicentre Liver Study Group. Lancet 344(8920), 423–428 (1994)

  8. J.D. Pirsch, J. Miller, M.H. Deierhoi, F. Vincenti, R.S. Filo, A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 63(7), 977–983 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. F.G. Cosio, T.E. Pesavento, K. Osei, M.L. Henry, R.M. Ferguson, Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int. 59(2), 732–737 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. F. Vincenti, S. Friman, E. Scheuermann, L. Rostaing, T. Jenssen, J.M. Campistol et al., Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. Am. J. Transplant. 7(6), 1506–1514 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. R.S. Woodward, M.A. Schnitzler, J. Baty, J.A. Lowell, L. Lopez-Rocafort, S. Haider et al., Incidence and cost of new onset diabetes mellitus among U.S. wait-listed and transplanted renal allograft recipients. Am. J. Transplant. 3(5), 590–598 (2003)

    Article  PubMed  Google Scholar 

  12. E. Porrini, J.M. Moreno, A. Osuna, R. Benitez, I. Lampreabe, J.M. Diaz et al., Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. Transplantation 85(8), 1133–1138 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. Y.S. Chien, Y.T. Chen, C.H. Chuang, Y.T. Cheng, F.R. Chuang, H. Hsieh, Incidence and risk factors of new-onset diabetes mellitus after renal transplantation. Transplant. Proc. 40(7), 2409–2411 (2008)

    Article  PubMed  Google Scholar 

  14. M. Veroux, D. Corona, G. Giuffrida, M. Gagliano, M. Sorbello, C. Virgilio et al., New-onset diabetes mellitus after kidney transplantation: the role of immunosuppression. Transplant. Proc. 40(6), 1885–1887 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. O. Johnston, C.L. Rose, A.C. Webster, J.S. Gill, Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19(7), 1411–1418 (2008)

    Article  PubMed  Google Scholar 

  16. C.T. Bussiere, J.R. Lakey, A.M. Shapiro, G.S. Korbutt, The impact of the mTOR inhibitor sirolimus on the proliferation and function of pancreatic islets and ductal cells. Diabetologia 49(10), 2341–2349 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. E. Bell, X. Cao, J.A. Moibi, S.R. Greene, R. Young, M. Trucco et al., Rapamycin has a deleterious effect on MIN-6 cells and rat and human islets. Diabetes 52(11), 2731–2739 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. E. Zahr, R.D. Molano, A. Pileggi, H. Ichii, S.S. Jose, N. Bocca et al., Rapamycin impairs in vivo proliferation of islet beta-cells. Transplantation 84(12), 1576–1583 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. W. Sui, H. Zou, G. Zou, Q. Yan, H. Chen, W. Che et al., Clinical study of the risk factors of insulin resistance and metabolic syndrome after kidney transplantation. Transpl. Immunol. 20(1–2), 95–98 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. H.A. Hakeam, A.H. Al-Jedai, S.M. Raza, K. Hamawi, Sirolimus induced dyslipidemia in tacrolimus based vs. tacrolimus free immunosuppressive regimens in renal transplant recipients. Ann. Transplant. 13(2), 46–53 (2008)

    CAS  PubMed  Google Scholar 

  21. M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, O. Pappo, M. Karaca, J. Castel et al., mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57(4), 945–957 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. J.J. Gibbons, R.T. Abraham, K. Yu, Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin. Oncol. 36(Suppl 3), S3–S17 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. C.B. Drachenberg, D.K. Klassen, M.R. Weir, A. Wiland, J.C. Fink, S.T. Bartlett et al., Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. Transplantation 68(3), 396–402 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. M.F. Crutchlow, R.D. Bloom, Transplant-associated hyperglycemia: a new look at an old problem. Clin. J. Am. Soc. Nephrol. 2(2), 343–355 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. E. Oetjen, D. Baun, S. Beimesche, D. Krause, I. Cierny, R. Blume et al., Inhibition of human insulin gene transcription by the immunosuppressive drugs cyclosporin A and tacrolimus in primary, mature islets of transgenic mice. Mol. Pharmacol. 63(6), 1289–1295 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. R.G. Radu, S. Fujimoto, E. Mukai, M. Takehiro, D. Shimono, K. Nabe et al., Tacrolimus suppresses glucose-induced insulin release from pancreatic islets by reducing glucokinase activity. Am. J. Physiol. Endocrinol. Metab. 288(2), E365–E371 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. J.B. Redmon, L.K. Olson, M.B. Armstrong, M.J. Greene, R.P. Robertson, Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells. J. Clin. Invest. 98(12), 2786–2793 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Y. Uchizono, M. Iwase, U. Nakamura, N. Sasaki, D. Goto, M. Iida, Tacrolimus impairment of insulin secretion in isolated rat islets occurs at multiple distal sites in stimulus-secretion coupling. Endocrinology 145(5), 2264–2272 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. A. Volosov, K.L. Napoli, S.J. Soldin, Simultaneous simple and fast quantification of three major immunosuppressants by liquid chromatography–tandem mass-spectrometry. Clin. Biochem. 34(4), 285–290 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. R. Muniyappa, H. Chen, R. Muzumdar, F.H. Einstein, X. Yan, L.Q. Yue et al., Comparison between surrogate indexes of insulin sensitivity/resistance and hyperinsulinemic euglycemic clamp estimates in rats. Am. J. Physiol. Endocrinol. Metab. 297, E1023–E1029 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We deeply appreciate the secretarial assistance of Pamela Welch and Mary Monaghan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivaswamy, V., McClure, M., Passer, J. et al. Hyperglycemia induced by tacrolimus and sirolimus is reversible in normal sprague–dawley rats. Endocr 37, 489–496 (2010). https://doi.org/10.1007/s12020-010-9332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9332-6

Keywords

Navigation