Skip to main content
Log in

Characterization of the serum and salivary cortisol response to the intravenous 250 µg ACTH1-24 stimulation test

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The ACTH1–24 stimulation test is commonly used to assess the hypothalamic-pituitary-adrenal (HPA) axis. Given variations in CBG concentration and binding affinity, serum total cortisol may misclassify some patients. Salivary cortisol correlates well with serum free cortisol but is easier to measure and widely available in commercial laboratories. The aim of this study was to investigate the utility of measuring salivary cortisol during the ACTH1–24 stimulation test.

Design and methods

Case–control study in a clinical research facility. Eighty-seven patients with suspected cortisol deficiency, twenty-four healthy controls, and ten healthy women on the oral contraceptive (OC) underwent an intravenous 250 µg ACTH1–24 stimulation test. Concordance of ACTH1–24 stimulated serum and salivary cortisol was evaluated.

Results

There was a significant difference in serum cortisol between the healthy volunteers and the women on the OC (P < 0.001) but no difference in salivary cortisol. The lower limit of the reference interval for salivary cortisol at 60 min was 26 nmol/L. 27/89 (30%) of tests with suspected HPA axis disorder failed the 60 min serum cortisol cut-off of 500 nmol/L. Of these, 24/27 (89%) had a salivary cortisol of <26 nmol/L. In contrast, 12/19 (63%) tests and 5/43 (12%) tests where the 60 min serum cortisol was 500–599 and ≥600 nmol/L, respectively had a salivary cortisol of <26 nmol/L.

Conclusions

Salivary cortisol provides additional diagnostic value during the 250 µg ACTH1–24 stimulation test in patients with proven or suspected alterations in CBG and potentially those with a borderline 60 min serum cortisol 500–599 nmol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. Bancos, S. Hahner, J. Tomlinson, W. Arlt, Diagnosis and management of adrenal insufficiency. Lancet Diabetes Endocrinol. 3, 216–226 (2015)

    Article  Google Scholar 

  2. J.B. Wood, A.W. Frankland, V.H. James, J. Landon, A rapid test of adrenocortical function. Lancet 1, 243–245 (1965)

    Article  CAS  Google Scholar 

  3. N.S. Ospina, A. Al Nofal, I. Bancos, A. Javed, K. Benkhadra, E. Kapoor, A.N. Lteif, N. Natt, M.H. Murad, ACTH stimulation tests for the diagnosis of adrenal insufficiency: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 101, 427–434 (2016)

    Article  CAS  Google Scholar 

  4. D.M. Keenan, F. Roelfsema, J.D. Veldhuis, Endogenous ACTH concentration-dependent drive of pulsatile cortisol secretion in the human. Am. J. Physiol. Endocrinol. Metab. 287, E652–661 (2004)

    Article  CAS  Google Scholar 

  5. L. Gagliardi, J.T. Ho, D.J. Torpy, Corticosteroid-binding globulin: the clinical significance of altered levels and heritable mutations. Mol. Cell. Endocrinol. 316, 24–34 (2010)

    Article  CAS  Google Scholar 

  6. Y.J. Bae, J. Kratzsch, Corticosteroid-binding globulin: modulating mechanisms of bioavailability of cortisol and its clinical implications. Best. Pract. Res. Clin. Endocrinol. Metab. 29, 761–772 (2015)

    Article  CAS  Google Scholar 

  7. W.J. Inder, G. Dimeski, A. Russell, Measurement of salivary cortisol in 2012—laboratory techniques and clinical indications. Clin. Endocrinol. 77, 645–651 (2012)

    Article  CAS  Google Scholar 

  8. S. Soule, VanZyl Smit, C. Parolis, G. Attenborough, S. Peter, D. Kinvig, S. Kinvig, T. Coetzer, E.: The low dose ACTH stimulation test is less sensitive than the overnight metyrapone test for the diagnosis of secondary hypoadrenalism. Clin. Endocrinol. 53, 221–227 (2000)

    Article  CAS  Google Scholar 

  9. B.C. McWhinney, G. Ward, P.E. Hickman, Improved HPLC method for simultaneous analysis of cortisol, 11-deoxycortisol, prednisolone, methylprednisolone, and dexamethasone in serum and urine. Clin. Chem. 42, 979–981 (1996)

    CAS  PubMed  Google Scholar 

  10. H.Y. Cho, J.H. Kim, S.W. Kim, C.S. Shin, K.S. Park, S.W. Kim, H.C. Jang, S.Y. Kim, Different cut-off values of the insulin tolerance test, the high-dose short synacthen test (250 mug) and the low-dose short Synacthen test (1 mug) in assessing central adrenal insufficiency. Clin. Endocrinol. 81, 77–84 (2014)

    Article  CAS  Google Scholar 

  11. P.M. Clark, I. Neylon, P.R. Raggatt, M.C. Sheppard, P.M. Stewart, Defining the normal cortisol response to the short Synacthen test: implications for the investigation of hypothalamic-pituitary disorders. Clin. Endocrinol. 49, 287–292 (1998)

    Article  CAS  Google Scholar 

  12. E. Endert, A. Ouwehand, E. Fliers, M.F. Prummel, W.M. Wiersinga, Establishment of reference values for endocrine tests. Part IV: adrenal insufficiency. Neth. J. Med. 63, 435–443 (2005)

    CAS  PubMed  Google Scholar 

  13. J. Gonzalbez, C. Villabona, J. Ramon, M.A. Navarro, O. Gimenez, W. Ricart, J. Soler, Establishment of reference values for standard dose short synacthen test (250 microgram), low dose short synacthen test (1 microgram) and insulin tolerance test for assessment of the hypothalamo-pituitary-adrenal axis in normal subjects. Clin. Endocrinol. 53, 199–204 (2000)

    Article  CAS  Google Scholar 

  14. Z. Karaca, A. Lale, F. Tanriverdi, M. Kula, K. Unluhizarci, F. Kelestimur, The comparison of low and standard dose ACTH and glucagon stimulation tests in the evaluation of hypothalamo-pituitary-adrenal axis in healthy adults. Pituitary 14, 134–140 (2011)

    Article  CAS  Google Scholar 

  15. N. El-Farhan, A. Pickett, D. Ducroq, C. Bailey, K. Mitchem, N. Morgan, A. Armston, L. Jones, C. Evans, D.A. Rees, Method-specific serum cortisol responses to the adrenocorticotrophin test: comparison of gas chromatography-mass spectrometry and five automated immunoassays. Clin. Endocrinol. 78, 673–680 (2013)

    Article  CAS  Google Scholar 

  16. M.P. Cornes, H.L. Ashby, Y. Khalid, H.N. Buch, C. Ford, R. Gama, Salivary cortisol and cortisone responses to tetracosactrin (synacthen). Ann. Clin. Biochem. 52, 606–610 (2015)

    Article  CAS  Google Scholar 

  17. M. Fleseriu, I.A. Hashim, N. Karavitaki, S. Melmed, M.H. Murad, R. Salvatori, M.H. Samuels, Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 3888–3921 (2016)

    Article  CAS  Google Scholar 

  18. S.J. Hurel, C.J. Thompson, M.J. Watson, M.M. Harris, P.H. Baylis, P. Kendall-Taylor, The short synacthen and insulin stress tests in the assessment of the hypothalamic-pituitary-adrenal axis. Clin. Endocrinol. 44, 141–146 (1996)

    Article  CAS  Google Scholar 

  19. A. Chitale, P. Musonda, A.M. McGregor, K.K. Dhatariya, Determining the utility of the 60 min cortisol measurement in the short synacthen test. Clin. Endocrinol. 79, 14–19 (2013)

    Article  CAS  Google Scholar 

  20. M. Duskova, K. Simunkova, J. Vitku, L. Sosvorova, H. Jandikova, H. Pospisilova, M. Sramkova, M. Kosak, M. Krsek, V. Hana, M. Zanova, D. Springer, L. Starka, A comparison of salivary steroid levels during diagnostic tests for adrenal insufficiency. Prague Med. Rep. 117, 18–33 (2016)

    Article  Google Scholar 

  21. R.I. Dorin, C.R. Qualls, L.M. Crapo, Diagnosis of adrenal insufficiency. Ann. Intern. Med. 139, 194–204 (2003)

    Article  Google Scholar 

  22. R. Kazlauskaite, A.T. Evans, C.V. Villabona, T.A. Abdu, B. Ambrosi, A.B. Atkinson, C.H. Choi, R.N. Clayton, C.H. Courtney, E.N. Gonc, M. Maghnie, S.R. Rose, S.G. Soule, K. Tordjman, Corticotropin tests for hypothalamic-pituitary-adrenal insufficiency: a meta-analysis. J. Clin. Endocrinol. Metab. 93, 4245–4253 (2008)

    Article  CAS  Google Scholar 

  23. M.G. Burt, B.L. Mangelsdorf, A. Rogers, J.T. Ho, J.G. Lewis, W.J. Inder, M.P. Doogue, Free and total plasma cortisol measured by immunoassay and mass spectrometry following ACTH(1-24) stimulation in the assessment of pituitary patients. J. Clin. Endocrinol. Metab. 98, 1883–1890 (2013)

    Article  CAS  Google Scholar 

  24. Y. Marcus-Perlman, K. Tordjman, Y. Greenman, R. Limor, G. Shenkerman, E. Osher, N. Stern, Low-dose ACTH (1 microg) salivary test: a potential alternative to the classical blood test. Clin. Endocrinol. 64, 215–218 (2006)

    Article  CAS  Google Scholar 

  25. K. Simunkova, L. Starka, M. Hill, L. Kriz, R. Hampl, K. Vondra, Comparison of total and salivary cortisol in a low-dose ACTH (synacthen) test: influence of three-month oral contraceptives administration to healthy women. Physiol. Res. 57(Suppl 1), S193–S199 (2008)

    CAS  PubMed  Google Scholar 

  26. M. Klose, M. Lange, A.K. Rasmussen, N.E. Skakkebaek, L. Hilsted, E. Haug, M. Andersen, U. Feldt-Rasmussen, Factors influencing the adrenocorticotropin test: role of contemporary cortisol assays, body composition, and oral contraceptive agents. J. Clin. Endocrinol. Metab. 92, 1326–1333 (2007)

    Article  CAS  Google Scholar 

  27. K. Simunkova, R. Hampl, M. Hill, J. Doucha, L. Starka, K. Vondra, Salivary cortisol in low dose (1 microg) ACTH test in healthy women: comparison with serum cortisol. Physiol. Res. 56, 449–453 (2007)

    CAS  PubMed  Google Scholar 

  28. I.Y.F. Mak, B.Y.T. Au Yeung, Y.W. Ng, C.H. Choi, H.Y.P. Iu, C.C. Shek, S.C. Tiu, Salivary cortisol and cortisone after low-dose corticotropin stimulation in the diagnosis of adrenal insufficiency. JES 1, 96–108 (2017)

    PubMed  Google Scholar 

  29. L.N. Contreras, A.L. Arregger, G.G. Persi, N.S. Gonzalez, E.M. Cardoso, A new less-invasive and more informative low-dose ACTH test: salivary steroids in response to intramuscular corticotrophin. Clin. Endocrinol. 61, 675–682 (2004)

    Article  CAS  Google Scholar 

  30. T. Deutschbein, N. Unger, K. Mann, S. Petersenn, Diagnosis of secondary adrenal insufficiency in patients with hypothalamic-pituitary disease: comparison between serum and salivary cortisol during the high-dose short synacthen test. Eur. J. Endocrinol. 160, 9–16 (2009)

    Article  CAS  Google Scholar 

  31. I. Perogamvros, L.J. Owen, B.G. Keevil, G. Brabant, P.J. Trainer, Measurement of salivary cortisol with liquid chromatography-tandem mass spectrometry in patients undergoing dynamic endocrine testing. Clin. Endocrinol. 72, 17–21 (2010)

    Article  CAS  Google Scholar 

  32. B.M. Arafah, F.J. Nishiyama, H. Tlaygeh, R. Hejal, Measurement of salivary cortisol concentration in the assessment of adrenal function in critically ill subjects: a surrogate marker of the circulating free cortisol. J. Clin. Endocrinol. Metab. 92, 2965–2971 (2007)

    Article  CAS  Google Scholar 

  33. H. Raff, S. Brock, J.W. Findling, Cosyntropin-stimulated salivary cortisol in hospitalized patients with hypoproteinemia. Endocrine 34, 68–74 (2008)

    Article  CAS  Google Scholar 

  34. A. Galbois, M. Rudler, J. Massard, Y. Fulla, A. Bennani, D. Bonnefont-Rousselot, V. Thibault, S. Reignier, A. Bourrier, T. Poynard, D. Thabut, Assessment of adrenal function in cirrhotic patients: salivary cortisol should be preferred. J. Hepatol. 52, 839–845 (2010)

    Article  CAS  Google Scholar 

  35. T. Tan, L. Chang, A. Woodward, B. McWhinney, J. Galligan, G.A. Macdonald, J. Cohen, B. Venkatesh, Characterising adrenal function using directly measured plasma free cortisol in stable severe liver disease. J. Hepatol. 53, 841–848 (2010)

    Article  CAS  Google Scholar 

  36. G. Elbuken, F. Tanriverdi, Z. Karaca, M. Kula, S. Gokahmetoglu, K. Unluhizarci, F. Kelestimur, Comparison of salivary and calculated free cortisol levels during low and standard dose of ACTH stimulation tests in healthy volunteers. Endocrine 48, 439–443 (2015)

    Article  CAS  Google Scholar 

  37. I. Perogamvros, B.G. Keevil, D.W. Ray, P.J. Trainer, Salivary cortisone is a potential biomarker for serum free cortisol. J. Clin. Endocrinol. Metab. 95, 4951–4958 (2010)

    Article  CAS  Google Scholar 

  38. H. Raff, Update on late-night salivary cortisol for the diagnosis of Cushing’s syndrome: methodological considerations. Endocrine 44, 346–349 (2013)

    Article  CAS  Google Scholar 

  39. R. Limor, K. Tordjman, Y. Marcus, Y. Greenman, E. Osher, Y. Sofer, N. Stern, Serum free cortisol as an ancillary tool in the interpretation of the low-dose 1-mug ACTH test. Clin. Endocrinol. 75, 294–300 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by a grant from the Study Education Research Committee, Pathology Queensland, Brisbane, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warrick J. Inder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolan, B.J., Sorbello, J., Brown, N. et al. Characterization of the serum and salivary cortisol response to the intravenous 250 µg ACTH1-24 stimulation test. Endocrine 59, 520–528 (2018). https://doi.org/10.1007/s12020-017-1505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1505-0

Keywords

Navigation