Skip to main content
Log in

Dendritic cells and the maintenance of self-tolerance

  • UNIVERSITY OF PITTSBURGH IMMUNOLOGY 2011
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Dendritic cells (DC) play important roles in the initiation of immune responses and in the maintenance of self-tolerance. We have been studying the role of DC in the pathogenesis of type 1 diabetes and exploring the ability of specific DC subsets to prevent diabetes in non-obese diabetic (NOD) mice. DC presenting low doses of antigen are capable of inducing and expanding T-regulatory (Treg) cells that have potent suppressive function. We review here our recent findings in this area and highlight the ability of semi-mature therapeutic DC to induce Treg expansion in the absence of exogenous antigen. We discuss how the presentation of endogenous self-antigen by DC may represent a natural mechanism for peripheral self-tolerance that can be harnessed to prevent autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Proietto AI, van Dommelen S, Zhou P, Rizzitelli A, D’Amico A, Steptoe RJ, Naik SH, Lahoud MH, Liu Y, Zheng P, Shortman K, Wu L. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc Natl Acad Sci USA. 2008;105:19869–74.

    Article  PubMed  CAS  Google Scholar 

  2. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. The Journal of Immunology. 2010;184:3433–41.

    Article  PubMed  CAS  Google Scholar 

  3. Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol. 2006;24:209–26.

    Article  PubMed  CAS  Google Scholar 

  4. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O’Garra A. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol. 1995;154:5071–9.

    PubMed  CAS  Google Scholar 

  5. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  PubMed  CAS  Google Scholar 

  6. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004;172:5149–53.

    PubMed  CAS  Google Scholar 

  7. Yamazaki S, Bonito AJ, Spisek R, Dhodapkar M, Inaba K, Steinman RM. Dendritic cells are specialized accessory cells along with TGF- for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood. 2007;110:4293–302.

    Article  PubMed  CAS  Google Scholar 

  8. Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr Allergy Asthma Rep. 2011;11:29–36.

    Article  PubMed  CAS  Google Scholar 

  9. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007;317:256–60.

    Article  PubMed  CAS  Google Scholar 

  10. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10:482–96.

    Article  PubMed  CAS  Google Scholar 

  11. Morel PA, Turner MS. Designing the optimal vaccine: the importance of cytokines and dendritic cells. The Open Vaccine Journal. 2010;3:7–17.

    Article  CAS  Google Scholar 

  12. Wicker LS, Clark J, Fraser HI, Garner VES, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL, Smink LJ, Todd JA, Peterson LB. Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun. 2005;25:29–33.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.

    Article  PubMed  CAS  Google Scholar 

  14. Feili-Hariri M, Dong X, Alber SM, Watkins SC, Salter RD, Morel PA. Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes. 1999;48:2300–8.

    Article  PubMed  CAS  Google Scholar 

  15. Feili-Hariri M, Falkner DH, Morel PA. Regulatory Th2 response induced following adoptive transfer of dendritic cells in prediabetic NOD mice. Eur J Immunol. 2002;32:2021–30.

    Article  PubMed  CAS  Google Scholar 

  16. Feili-Hariri M, Falkner DH, Gambotto A, Papworth GD, Watkins SC, Robbins PD, Morel PA. Dendritic cells transduced to express IL-4 prevent diabetes in nonobese diabetic mice with established insulitis. Human Gene Ther. 2003;14:13–23.

    Article  CAS  Google Scholar 

  17. Feili-Hariri M, Falkner DH, Morel PA. Polarization of naive T cells into Th1 or Th2 by distinct cytokine-driven murine dendritic cell populations: implications for immunotherapy. J Leukoc Biol. 2005;78:656–64.

    Article  PubMed  CAS  Google Scholar 

  18. Zanoni I, Granucci F. The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity. 2011;44:23–32.

    Article  PubMed  CAS  Google Scholar 

  19. Darrasse-Jeze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao KH, Masilamani RF, Dustin ML, Rudensky A, Liu K, Nussenzweig MC. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206:1853–62.

    Article  PubMed  CAS  Google Scholar 

  20. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196:1627–38.

    Article  PubMed  CAS  Google Scholar 

  21. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC. Dendritic cells induce peripheral T Cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194:769–80.

    Article  PubMed  CAS  Google Scholar 

  22. von Boehmer H. Peptide-based instruction of suppressor commitment in naive T cells and dynamics of immunosuppression in vivo. Scand J Immunol. 2005;62(Suppl 1):49–54.

    Article  Google Scholar 

  23. Turner MS, Kane LP, Morel PA. Dominant role of antigen dose in CD4+ Foxp3+ regulatory T cell induction and expansion. J Immunol. 2009;183:4895–903.

    Article  PubMed  CAS  Google Scholar 

  24. Katz JD, Wang B, Haskins K, Benoist C, Mathis D. Following a diabetogenic T cell from genesis through pathogenesis. Cell. 1993;74:1089–100.

    Article  PubMed  CAS  Google Scholar 

  25. Judkowski V, Pinilla C, Schroder K, Tucker L, Sarvetnick N, Wilson DB. Identification of MHC class II-restricted peptide ligands, including a glutamic acid decarboxylase 65 sequence, that stimulate diabetogenic T cells from transgenic BDC2.5 nonobese diabetic mice. J Immunol. 2001;166:908–17.

    PubMed  CAS  Google Scholar 

  26. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6:1219–27.

    Article  PubMed  CAS  Google Scholar 

  27. Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+ Foxp3+ cells. J Exp Med. 2008;205:565–74.

    Article  PubMed  CAS  Google Scholar 

  28. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105:7797–802.

    Article  PubMed  CAS  Google Scholar 

  29. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.

    Article  PubMed  CAS  Google Scholar 

  30. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N, Magnuson MA, Boothby M. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity. 2010;32:743–53.

    Article  PubMed  CAS  Google Scholar 

  31. Battaglia M, Stabilini A, Roncarolo M-G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood. 2005;105:4743–8.

    Article  PubMed  CAS  Google Scholar 

  32. Basu S, Golovina T, Mikheeva T, June CH, Riley JL. Cutting edge: Foxp3-mediated induction of Pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol. 2008;180:5794–8.

    PubMed  CAS  Google Scholar 

  33. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol. 2007;178:320–9.

    PubMed  CAS  Google Scholar 

  34. Morel PA, Srinivas M, Turner MS, Fuschiotti P, Munshi R, Bahar I, Feili-Hariri M, Ahrens ET. Gene expression analysis of dendritic cells that prevent diabetes in NOD mice: analysis of chemokines and costimulatory molecules. J Leuk Biol 2011;Under Revsion.

  35. Hoshino A, Tanaka Y, Akiba H, Asakura Y, Mita Y, Sakurai T, Takaoka A, Nakaike S, Ishii N, Sugamura K, Yagita H, Okumura K. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur J Immunol. 2003;33:861–9.

    Article  PubMed  CAS  Google Scholar 

  36. So T, Croft M. Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells. J Immunol. 2007;179:1427–30.

    PubMed  CAS  Google Scholar 

  37. Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol. 2005;23:983–7.

    Article  PubMed  CAS  Google Scholar 

  38. Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med. 2007;58:725–34.

    Article  PubMed  CAS  Google Scholar 

  39. Haase C, Ejrnaes M, Juedes AE, Wolfe T, Markholst H, von Herrath MG. Immunomodulatory dendritic cells require autologous serum to circumvent nonspecific immunosuppressive activity in vivo. Blood. 2005;106:4225–33.

    Article  PubMed  CAS  Google Scholar 

  40. Carrasco-Marin E, Shimizu J, Kanagawa O, Unanue E. The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J Immunol. 1996;156:450–8.

    PubMed  CAS  Google Scholar 

  41. Kishimoto H, Sprent J. A defect in central tolerance in NOD mice. Nat Immunol. 2001;2:1025–31.

    Article  PubMed  CAS  Google Scholar 

  42. Ryan SO, Turner MS, Gariépy J, Finn OJ. Tumor antigen epitopes interpreted by the immune system as self or abnormal-self differentially affect cancer vaccine responses. Cancer Res. 2010;70:5788–96.

    Article  PubMed  CAS  Google Scholar 

  43. Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007;26:79–92.

    Article  PubMed  CAS  Google Scholar 

  44. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455:396–400.

    Article  PubMed  CAS  Google Scholar 

  45. Virgin HW, Levine B. Autophagy genes in immunity. Nat Immunol. 2009;10:461–70.

    Article  PubMed  CAS  Google Scholar 

  46. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL Jr, Eissa NT. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med. 2009;15:267–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Huijie Sun for expert technical assistance. This work was supported by National Institutes of Health grant CA73743 (PAM) and National Institutes of Health training grant 5T32 CA82084 (MST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope A. Morel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, P.A., Turner, M.S. Dendritic cells and the maintenance of self-tolerance. Immunol Res 50, 124–129 (2011). https://doi.org/10.1007/s12026-011-8217-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8217-y

Keywords

Navigation