Skip to main content
Log in

EGCG induces G-CSF expression and neutrophilia in experimental sepsis

  • AUTOIMMUNITY/IMMUNOREGULATION/ INFLAMMATION
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

A major green tea component, epigallocatechin-3-gallate (EGCG), has been proven protective against lethal sepsis in experimental setting, but its protective mechanisms remain incompletely understood. Here, we provide evidence to support EGCG’s capacities in stimulating G-CSF production and neutrophilia in vivo. In an animal model of sepsis, EGCG significantly elevated peritoneal levels of G-CSF and several chemokines (e.g., MCP-1/CCL2 and MIP-1γ/CCL9), and consequently increased peritoneal neutrophil numbers (neutrophilia) at a late stage. In vitro, EGCG divergently affected HMGB1-mediated production of several chemokines: reducing CXCL15 and RANTES/CCL5, but elevating G-CSF and MIP-1α/CCL3 production by peritoneal macrophages. Similarly, it significantly induced the expression and secretion of G-CSF and MIP-1α/CCL3 in human peripheral blood mononuclear cells. Based on our preliminary data, it may be important to search for anti-inflammatory and G-CSF-stimulating agents for the clinical management of inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CLP:

Cecal ligation and puncture

EGCG:

Epigallocatechin-3-gallate

G-CSF:

Granulocyte colony-stimulating factor

HMGB1:

High-mobility group box 1

MIP-1:

Macrophage inflammatory protein-1

TLR:

Toll-like receptor

References

  1. Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005;6(12):1182–90.

    Article  CAS  PubMed  Google Scholar 

  2. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The neutrophil as a cellular source of chemokines. Immunol Rev. 2000;177:195–203.

    Article  CAS  PubMed  Google Scholar 

  3. Liles WC. Immunomodulatory approaches to augment phagocyte-mediated host defense for treatment of infectious diseases. Semin Respir Infect. 2001;16(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  4. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999;285(5428):732–6.

    Article  CAS  PubMed  Google Scholar 

  5. Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5.

    Article  CAS  PubMed  Google Scholar 

  7. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20:709–60.

    Article  CAS  PubMed  Google Scholar 

  8. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  PubMed  Google Scholar 

  9. Baggiolini M, Loetscher P. Chemokines in inflammation and immunity. Immunol Today. 2000;21(9):418–20.

    Article  CAS  PubMed  Google Scholar 

  10. Balkwill F. Cytokines—soluble factors in immune responses. Curr Opin Immunol. 1988;1(2):241–9.

    Article  CAS  PubMed  Google Scholar 

  11. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  12. Ayala A, Song GY, Chung CS, Redmond KM, Chaudry IH. Immune depression in polymicrobial sepsis: the role of necrotic (injured) tissue and endotoxin. Crit Care Med. 2000;28(8):2949–55.

    Article  CAS  PubMed  Google Scholar 

  13. Xiang M, Fan J. Pattern recognition receptor-dependent mechanisms of acute lung injury. Mol Med. 2010;16(1–2):69–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323(5922):1722–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996;272(5262):735–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285(5425):248–51.

    Article  CAS  PubMed  Google Scholar 

  17. Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, Susarla SM, Ulloa L, Wang H, DiRaimo R, Czura CJ, Wang H, Roth J, Warren HS, Fink MP, Fenton MJ, Andersson U, Tracey KJ. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA. 2004;101(1):296–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K, Rosas-Ballina M, Czura CJ, Huston JM, Miller E, Lin X, Sherry B, Kumar A, Larosa G, Newman W, Tracey KJ, Yang H. Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med. 2006;203(7):1637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang H, Zhu S, Zhou R, Li W, Sama AE. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med. 2008;10:e32.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li W, Ashok M, Li J, Yang H, Sama AE, Wang H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS ONE. 2007;2(11):e1153.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li W, Zhu S, Li J, Assa A, Jundoria A, Xu J, Fan S, Eissa NT, Tracey KJ, Sama AE, Wang H. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem Pharmacol. 2011;81(9):1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang F, de Villiers WJ, McClain CJ, Varilek GW. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr. 1998;128(12):2334–40.

    CAS  PubMed  Google Scholar 

  23. Wheeler DS, Lahni PM, Hake PW, Denenberg AG, Wong HR, Snead C, Catravas JD, Zingarelli B. The green tea polyphenol epigallocatechin-3-gallate improves systemic hemodynamics and survival in rodent models of polymicrobial sepsis. Shock. 2007;28(3):353–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu S, Ashok M, Li J, Li W, Yang H, Wang P, Tracey KJ, Sama AE, Wang H. Spermine protects mice against lethal sepsis partly by attenuating surrogate inflammatory markers. Mol Med. 2009;15(7–8):275–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li W, Zhu S, Li J, Huang Y, Zhou R, Fan X, Yang H, Gong X, Eissa NT, Jahnen-Dechent W, Wang P, Tracey KJ, Sama AE, Wang H. A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation. PLoS ONE. 2011;6(2):e16945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li W, Zhu S, Zhang Y, Li J, Sama AE, Wang P, Wang H. Use of animal model of sepsis to evaluate novel herbal therapies. J Vis Exp. 2012;62:3926.

    PubMed  Google Scholar 

  27. Zhang Y, Li W, Zhu S, Jundoria A, Li J, Yang H, Fan S, Wang P, Tracey KJ, Sama AE, Wang H. Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake. Biochem Pharmacol. 2012;84(11):1492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen G, Li J, Ochani M, Rendon-Mitchell B, Qiang X, Susarla S, Ulloa L, Yang H, Fan S, Goyert SM, Wang P, Tracey KJ, Sama AE, Wang H. Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J Leukoc Biol. 2004;76(5):994–1001.

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Li J, Ashok M, Wu R, Chen D, Yang L, Yang H, Tracey KJ, Wang P, Sama AE, Wang H. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. J Immunol. 2007;178(6):3856–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rendon-Mitchell B, Ochani M, Li J, Han J, Wang H, Yang H, Susarla S, Czura C, Mitchell RA, Chen G, Sama AE, Tracey KJ, Wang H. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol. 2003;170(7):3890–7.

    Article  CAS  PubMed  Google Scholar 

  31. Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, Choe KH, Strassheim D, Pitts TM, Tracey KJ, Abraham E. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284(4):C870–9.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Yang H, Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med. 2004;255(3):320–31.

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets. 2014;18(3):257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192(4):565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao L, Li W, Zhu S, Tsai S, Li J, Tracey KJ, Wang P, Fan S, Sama AE, Wang H. Green tea catechins quench the fluorescence of bacteria-conjugated Alexa fluor dyes. Inflamm Allergy Drug Targets. 2013;12(5):308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 1986;232(4746):61–5.

    Article  CAS  PubMed  Google Scholar 

  37. Chervenick PA, LoBuglio AF. Human blood monocytes: stimulators of granulocyte and mononuclear colony formation in vitro. Science. 1972;178(4057):164–6.

    Article  CAS  PubMed  Google Scholar 

  38. Gabrilove JL, Jakubowski A, Scher H, Sternberg C, Wong G, Grous J, Yagoda A, Fain K, Moore MA, Clarkson B. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med. 1988;318(22):1414–22.

    Article  CAS  PubMed  Google Scholar 

  39. Raso SW, Abel J, Barnes JM, Maloney KM, Pipes G, Treuheit MJ, King J, Brems DN. Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci. 2005;14(9):2246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA. 2010;107(17):7710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol. 2008;15(6):558–66.

    Article  CAS  PubMed  Google Scholar 

  42. Balamayooran G, Batra S, Balamayooran T, Cai S, Jeyaseelan S. Monocyte chemoattractant protein 1 regulates pulmonary host defense via neutrophil recruitment during Escherichia coli infection. Infect Immun. 2011;79(7):2567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Poltorak AN, Bazzoni F, Smirnova II, Alejos E, Thompson P, Luheshi G, Rothwell N, Beutler B. MIP-1 gamma: molecular cloning, expression, and biological activities of a novel CC chemokine that is constitutively secreted in vivo. J Inflamm. 1995;45(3):207–19.

    CAS  PubMed  Google Scholar 

  44. Katiyar SK, Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress. J Leukoc Biol. 2001;69(5):719–26.

    CAS  PubMed  Google Scholar 

  45. Takano K, Nakaima K, Nitta M, Shibata F, Nakagawa H. Inhibitory effect of (-)-epigallocatechin 3-gallate, a polyphenol of green tea, on neutrophil chemotaxis in vitro and in vivo. J Agric Food Chem. 2004;52(14):4571–6.

    Article  CAS  PubMed  Google Scholar 

  46. Dona M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S. Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol. 2003;170(8):4335–41.

    Article  CAS  PubMed  Google Scholar 

  47. Baron EJ, Proctor RA. Elicitation of peritoneal polymorphonuclear neutrophils from mice. J Immunol Methods. 1982;49(3):305–13.

    Article  CAS  PubMed  Google Scholar 

  48. Misharin AV, Saber R, Perlman H. Eosinophil contamination of thioglycollate-elicited peritoneal macrophage cultures skews the functional readouts of in vitro assays. J Leukoc Biol. 2012;92(2):325–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amura CR, Silverstein R, Morrison DC. Mechanisms involved in the pathogenesis of sepsis are not necessarily reflected by in vitro cell activation studies. Infect Immun. 1998;66(11):5372–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Spiller F, Costa C, Souto FO, Vinchi F, Mestriner FL, Laure HJ, Alves-Filho JC, Freitas A, Rosa JC, Ferreira SH, Altruda F, Hirsch E, Greene LJ, Tolosano E, Cunha FQ. Inhibition of neutrophil migration by hemopexin leads to increased mortality due to sepsis in mice. Am J Respir Crit Care Med. 2011;183(7):922–31.

    Article  CAS  PubMed  Google Scholar 

  51. Gordon NC, Wareham DW. Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia. Int J Antimicrob Agents. 2010;36(2):129–31.

    Article  CAS  PubMed  Google Scholar 

  52. Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 2013;168(5):1059–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Isaacs CE, Wen GY, Xu W, Jia JH, Rohan L, Corbo C, Di Maggio V, Jenkins EC Jr, Hillier S. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother. 2008;52(3):962–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res. 1993;21(4):289–99.

    Article  CAS  PubMed  Google Scholar 

  55. Park BJ, Park JC, Taguchi H, Fukushima K, Hyon SH, Takatori K. Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochem Biophys Res Commun. 2006;347(2):401–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Center of Complementary and Alternative Medicine (NCCIH, R01AT05076) and the National Institute of General Medical Sciences (NIGMS, R01GM063075).

Author contributions

H.W., W.L., R.W., S.Z., and J.D. designed the study; W.L., S. Z., A.W., and R.W. performed the experiments; J.L. provided purified recombinant HMGB1; H.W. analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Wang.

Additional information

Wei Li, Andrew H. Wu and Shu Zhu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wu, A.H., Zhu, S. et al. EGCG induces G-CSF expression and neutrophilia in experimental sepsis. Immunol Res 63, 144–152 (2015). https://doi.org/10.1007/s12026-015-8681-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8681-x

Keywords

Navigation