Skip to main content

Advertisement

Log in

Distorted frequency of dendritic cells and their associated stimulatory and inhibitory markers augment the pathogenesis of pemphigus vulgaris

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the frequency and functionality of DCs and its associated stimulatory and inhibitory markers in the pathogenesis of PV Active PV patients (n = 30) having both skin and oral lesions, and 30 healthy controls were recruited in the study. The frequency of DCs was determined by flow cytometry followed by the primary culture by using recombinant IL-4 (250 IU/ml) and GM-CSF (600 IU/ml). The culture supernatant was used for ELISA. RNA was isolated from sorted DCs and used for the mRNA expression of DC-associated stimulatory (CD40 and CD80) and inhibitory (PSGL1 and ILT3) markers. Tissue localization of Langerhans cells was done by immunohistochemistry. In this study, altered frequency of myeloid DC (mDC) and plasmacytoid DC (pDC) was seen in the circulation of PV patients. The primary culture of patient-derived DCs showed anomalous cytokine profiling. In the culture supernatant of DCs, elevated levels of TNF-ɑ and IL-12 were detected in PV patients. Meanwhile, reverse trend was found in the case of IFN-ɑ and IL-10 cytokine levels. Similarly, a discrepancy in the expression of DC-associated stimulatory (CD40 and CD80) and inhibitory (PSGL1 and ILT3) markers suggested their possible involvement in the immunopathogenesis of PV. An elevated number of tissue localizing Langerhans cells was also observed in the perilesional skin. This study indicates the distorted frequency and functionality of DCs in the immunopathogenesis of PV. Targeting these functional markers in the future may generate novel therapeutic options for better management of PV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Udey MC, Stanley JR. Pemphigus—diseases of antidesmosomal autoimmunity. JAMA. 1999;282:572. https://doi.org/10.1001/jama.282.6.572.

    Article  CAS  PubMed  Google Scholar 

  2. Amagai M, Stanley JR. Desmoglein as a target in skin disease and beyond. J Invest Dermatol. 2012;132:776–84. https://doi.org/10.1038/jid.2011.390.

    Article  CAS  PubMed  Google Scholar 

  3. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8. https://doi.org/10.1038/nature04753.

    Article  CAS  PubMed  Google Scholar 

  4. Asothai R, Anand V, Das D, Antil PS, Khandpur S, Sharma V, et al. Distinctive Treg associated CCR4-CCL22 expression profile with altered frequency of Th17/Treg cell in the immunopathogenesis of pemphigus vulgaris. Immunobiology. 2015;220:1129–35. https://doi.org/10.1016/J.IMBIO.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  5. Piccioli D, Tavarini S, Borgogni E, Steri V, Nuti S, Sammicheli C, et al. Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood. 2007;109:5371–9. https://doi.org/10.1182/blood-2006-08-038422.

    Article  CAS  PubMed  Google Scholar 

  6. Lindstedt M, Lundberg K, Borrebaeck CAK. Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J Immunol. 2005;175:4839–46. https://doi.org/10.4049/JIMMUNOL.175.8.4839.

    Article  CAS  PubMed  Google Scholar 

  7. Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol. 2001;31:3388–93. https://doi.org/10.1002/1521-4141(200111)31:11<3388::AID-IMMU3388>3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  8. Charles J, Chaperot L, Salameire D, Di Domizio J, Aspord C, Gressin R, et al. Plasmacytoid dendritic cells and dermatological disorders: focus on their role in autoimmunity and cancer. Eur J Dermatol. 2010;20:16–23. https://doi.org/10.1684/ejd.2010.0816.

    Article  CAS  PubMed  Google Scholar 

  9. Maddur MS, Vani J, Dimitrov JD, Balaji KN, Lacroix-Desmazes S, Kaveri SV, et al. Dendritic cells in. Autoimmune Dis. 2010; https://pdfs.semanticscholar.org/1089/76c522481020558309c535742ed1b70f3adb.pdf (accessed August 30, 2019).

  10. Schreibelt G, Tel J, Sliepen KHEWJ, Benitez-Ribas D, Figdor CG, Adema GJ, et al. Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol Immunother. 2010;59:1573–82. https://doi.org/10.1007/s00262-010-0833-1.

    Article  CAS  PubMed  Google Scholar 

  11. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC, et al. psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol. 2009;129:79–88. https://doi.org/10.1038/jid.2008.194.

    Article  CAS  PubMed  Google Scholar 

  12. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J Exp Med. 2005;202:135–43. https://doi.org/10.1084/jem.20050500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sánchez-Madrid Pilar F, Martin MK, Wild D, Vestweber R, Hortensia de la Fuente O, Barreiro IM, et al. Generation of tolerogenic dendritic cells ligand 1/P-selectin interaction in the functional role of P-selectin glycoprotein. J Immunol. 2007;179:7457–65. https://doi.org/10.4049/jimmunol.179.11.7457.

    Article  Google Scholar 

  14. Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol. 2002;3:237–43. https://doi.org/10.1038/ni760.

    Article  CAS  PubMed  Google Scholar 

  15. Colonna M, Navarro F, Bellón T, Llano M, García P, Samaridis J, et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med. 1997;186:1809–18. https://doi.org/10.1084/jem.186.11.1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tseng S-Y, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. B7-Dc, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med. 2001;193:839–46. https://doi.org/10.1084/jem.193.7.839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8. https://doi.org/10.1038/85330.

    Article  CAS  PubMed  Google Scholar 

  18. Sancho D, Gómez M, Viedma F, Esplugues E, Gordón-Alonso M, Angeles García-López M, et al. CD69 downregulates autoimmune reactivity through active transforming growth factor-β production in collagen-induced arthritis. J Clin Invest. 2003;112:872–82. https://doi.org/10.1172/JCI19112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamana A, Martin P, de la Fuente H, Martinez-Muñoz L, Cruz-Adalia A, Ramirez-Huesca M, et al. CD69 Modulates sphingosine-1-phosphate-induced migration of skin dendritic cells. J Invest Dermatol. 2011;131:1503–12. https://doi.org/10.1038/jid.2011.54.

    Article  CAS  PubMed  Google Scholar 

  20. Jochems C, Fantini M, Fernando RI, Kwilas AR, Donahue RN, Lepone LM, et al. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget. 2016;7:37762–37,772. https://doi.org/10.18632/oncotarget.9326.

    Article  PubMed  Google Scholar 

  21. Ludewig B, Odermatt B, Ochsenbein AF, Zinkernagel RM, Hengartner H. Role of dendritic cells in the induction and maintenance of autoimmune diseases. Immunol Rev. 1999;169:45–54 http://www.ncbi.nlm.nih.gov/pubmed/10450507 (accessed August 30, 2019).

    Article  CAS  Google Scholar 

  22. Drakesmith H, Chain B, Beverley P. How can dendritic cells cause autoimmune disease? Immunol Today. 2000;21:214–7 http://www.ncbi.nlm.nih.gov/pubmed/10782051 (accessed August 30, 2019).

    Article  CAS  Google Scholar 

  23. Turley SJ. Dendritic cells: inciting and inhibiting autoimmunity. Curr Opin Immunol. 2002;14:765–70 http://www.ncbi.nlm.nih.gov/pubmed/12413527 (accessed August 30, 2019).

    Article  CAS  Google Scholar 

  24. Marrack P, Kappler J, Kotzin BL. Autoimmune disease: why and where it occurs. Nat Med. 2001;7:899–905. https://doi.org/10.1038/90935.

    Article  CAS  PubMed  Google Scholar 

  25. Bayry J, Thirion M, Delignat S, Misra N, Lacroix-Desmazes S, Kazatchkine MD, et al. Dendritic cells and autoimmunity. Autoimmun Rev. 2004;3:183–7. https://doi.org/10.1016/S1568-9972(03)00104-6.

    Article  PubMed  Google Scholar 

  26. Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med. 1998;188:1493–501. https://doi.org/10.1084/jem.188.8.1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boyman O, Conrad C, Tonel G, Gilliet M, Nestle FO. The pathogenic role of tissue-resident immune cells in psoriasis. Trends Immunol. 2007;28:51–7. https://doi.org/10.1016/j.it.2006.12.005.

    Article  PubMed  Google Scholar 

  28. André S, Tough DF, Lacroix-Desmazes S, Kaveri SV, Bayry J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am J Pathol. 2009;174:1575–87. https://doi.org/10.2353/ajpath.2009.080987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mo J-H, Chung Y-J, Hayashi T, Lee J, Raz E. The role of plasmacytoid and myeloid dendritic cells in induction of asthma in a mouse model and the effect of a TLR9 agonist on dendritic cells. Allergy, Asthma Immunol Res. 2011;3:199. https://doi.org/10.4168/aair.2011.3.3.199.

    Article  CAS  Google Scholar 

  30. Chiossi MPV, Costa RS, Roselino AMF. Dermal dendritic cell number correlates with serum autoantibody titers in Brazilian pemphigus foliaceus patients. Braz J Med Biol Res. 2004;37:337–41. https://doi.org/10.1590/S0100-879X2004000300008.

    Article  CAS  PubMed  Google Scholar 

  31. Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13:566–77. https://doi.org/10.1038/nri3477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL. Plasmacytoid dendritic cells (natural interferon- alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol. 2001;159:237–43. https://doi.org/10.1016/s0002-9440(10)61689-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Migita K, Miyashita T, Maeda Y, Kimura H, Nakamura M, Yatsuhashi H, et al. Reduced blood BDCA-2+ (lymphoid) and CD11c+ (myeloid) dendritic cells in systemic lupus erythematosus. Clin Exp Immunol. 2005;142:84–91. https://doi.org/10.1111/j.1365-2249.2005.02897.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joo H, Upchurch K, Zhang W, Ni L, Li D, Xue Y, et al. Opposing roles of dectin-1 expressed on human plasmacytoid dendritic cells and myeloid dendritic cells in Th2 polarization. J Immunol. 2015;195:1723–31. https://doi.org/10.4049/jimmunol.1402276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eidsmo L, Martini E. Human Langerhans cells with pro-inflammatory features relocate within psoriasis lesions. Front Immunol. 2018;9:300. https://doi.org/10.3389/fimmu.2018.00300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hovav A-H. Mucosal and skin Langerhans cells–nurture calls. Trends Immunol. 2018;39:788–800. https://doi.org/10.1016/j.it.2018.08.007.

    Article  CAS  PubMed  Google Scholar 

  37. Seré K, Baek J-H, Ober-Blöbaum J, Müller-Newen G, Tacke F, Yokota Y, et al. Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity. 2012;37:905–16. https://doi.org/10.1016/j.immuni.2012.07.019.

    Article  CAS  PubMed  Google Scholar 

  38. Hengartner H, Odermat B, Schneider R, Schreyer M, Wälle G, MacDonald HR, et al. Deletion of self-reactive T cells before entry into the thymus medulla. Nature. 1988;336:388–90. https://doi.org/10.1038/336388a0.

    Article  CAS  PubMed  Google Scholar 

  39. Watanabe N, Wang Y-H, Lee HK, Ito T, Wang Y-H, Cao W, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature. 2005;436:1181–5. https://doi.org/10.1038/nature03886.

    Article  CAS  PubMed  Google Scholar 

  40. Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol. 2006;7:652–62. https://doi.org/10.1038/ni1333.

    Article  CAS  PubMed  Google Scholar 

  41. Ito T, Yang M, Wang Y-H, Lande R, Gregorio J, Perng OA, et al. Plasmacytoid dendritic cells prime IL-10–producing T regulatory cells by inducible costimulator ligand. J Exp Med. 2007;204:105–15. https://doi.org/10.1084/jem.20061660.

    Article  CAS  PubMed  Google Scholar 

  42. Gilliet M, Liu Y-J. Generation of human CD8 T regulatory cells by CD40 ligand–activated plasmacytoid dendritic cells. J Exp Med. 2002;195:695–704. https://doi.org/10.1084/jem.20011603.

    Article  CAS  PubMed  Google Scholar 

  43. Urzainqui A, Martinez G, Hoyo D, Barreiro O, Martin P. Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic dendritic cells A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T Cell Interactions with the Cervical Spinal Cord Microvasculature during Experimental Autoimmune Encephalomyelitis View project Ultrasound molecular imaging View project, Artic. J Immunol. 2008. https://doi.org/10.4049/jimmunol.179.11.7457.

  44. Nickoloff BJ, Nestle FO. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest. 2004;113:1664–75. https://doi.org/10.1172/JCI22147.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank All India Institute of Medical Sciences, New Delhi, India, for providing the Intramural Research Grant (IRG) to carry out this work.

Funding

This study received funding from the Indian Council of Medical Research (ICMR- 61/4/2018-BMS) (Project code I-1034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alpana Sharma.

Ethics declarations

The Institutional Ethical clearance was obtained before initiating the study. The informed consent from all the study subjects was taken.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Singh, A., Antil, P.S. et al. Distorted frequency of dendritic cells and their associated stimulatory and inhibitory markers augment the pathogenesis of pemphigus vulgaris. Immunol Res 68, 353–362 (2020). https://doi.org/10.1007/s12026-020-09166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09166-0

Keywords

Navigation