Skip to main content

Advertisement

Log in

“Optimal Cerebral Perfusion Pressure” in Poor Grade Patients After Subarachnoid Hemorrhage

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Cerebrovascular pressure reactivity depends on cerebral perfusion pressure (CPP), with the optimal CPP (CPPopt) defined as pressure at which cerebrovascular reactivity is functioning optimally, reaching minimal value of pressure reactivity index (PRx). The study investigates the association between vasospasm, PRx, and CPPopt in poor grade patients (WFNS 4&5) after subarachnoid hemorrhage (SAH).

Methods

Data of intracranial pressure (ICP), arterial blood pressure (ABP), and flow velocities (FV) in the Middle Cerebral Artery (MCA) on transcranial Doppler from 42 SAH patients were analyzed retrospectively. PRx was calculated as a correlation coefficient between 10 s mean values of ABP and ICP calculated over a moving 3 min window. Data recorded during the first 48 h were available in 25 cases and during the first 3 days in 29 patients. Recordings obtained from day 4 to day 24 were available in 23 patients.

Results

PRx at optimal CPP measured during the first 48 h showed better cerebrovascular reactivity in patients who were alive at 3 months after ictus than in those who died (PRx value −0.17 ± 0.05 vs. 0.1 ± 0.09; P < 0.01). PRx below zero at CPPopt during the first 48 h had 87.5% positive predictive value for survival. CPPopt was lower before than during vasospasm (78 ± 3 mmHg, N = 29 vs. 98 ± 4 mmHg; N = 17, P < 0.0001). The overall correlation between CPPopt and Lindegaard ratio was positive (R = 0.39; P < 0.01; N = 45).

Conclusion

Most WFNS 4&5 grade SAH patients with PRx below zero at optimal CPP during the first 48 h after ictus survived. Optimal CPP increases during vasospasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Linn FH, Rinkel GJ, Algra A, van Gijn J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke. 1996;27:625–9.

    PubMed  CAS  Google Scholar 

  2. Johnston SC, Selvin S, Gress DR. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology. 1998;50:1413–8.

    PubMed  CAS  Google Scholar 

  3. Heros RC, Zervas NT, Varsos V. Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol. 1983;14:599–608.

    Article  PubMed  CAS  Google Scholar 

  4. Kassell NF, Torner JC, Haley EC Jr, Jane JA, Adams HP, Kongable GL. The international cooperative study on the timing of aneurysm surgery. Part 1: overall management results. J Neurosurg. 1990;73:18–36.

    Article  PubMed  CAS  Google Scholar 

  5. Pluta RM. Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005;105:23–56.

    Article  PubMed  CAS  Google Scholar 

  6. Schievink WI. Intracranial aneurysms. N Engl J Med. 1997;336:28–40.

    Article  PubMed  CAS  Google Scholar 

  7. Seiler R, Newell D. Subarachnoid hemorrhage and vasospasm. In: Newell D, Aaslid R, editors. Transcranial Doppler. New York: Raven Press; 1992. p. 101–7.

    Google Scholar 

  8. van Gijn J, Kerr SR, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;396:306–18.

    Article  Google Scholar 

  9. Weir B, Grace M, Hansen J, Rothberg C. Time course of vasospasm in man. J Neurosurg. 1978;48:173–8.

    Article  PubMed  CAS  Google Scholar 

  10. Wintermark M, Ko NU, Smith WS, Liu S, Higashida RT, Dillon WP. Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. AJNR Am J Neuroradiol. 2006;27:26–34.

    PubMed  CAS  Google Scholar 

  11. Lysakowski C, Walder B, Costanza MC, Tramer MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke. 2001;32:2292–8.

    Article  PubMed  CAS  Google Scholar 

  12. Aaslid R, Huber P, Nornes H. Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg. 1984;60:37–41.

    Article  PubMed  CAS  Google Scholar 

  13. Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM. Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 1999;44:1237–47.

    Article  PubMed  Google Scholar 

  14. Steiner LA, Czosnyka M, Piechnik SK, Smielewski P, Chatfield D, Menon DK, Pickard JD. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    Article  PubMed  Google Scholar 

  15. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke. 2005;36:1627–32.

    Article  PubMed  CAS  Google Scholar 

  16. Lindegaard KF. The role of transcranial Doppler in the management of patients with subarachnoid haemorrhage—a review. Acta Neurochir Suppl. 1999;72:59–71.

    PubMed  CAS  Google Scholar 

  17. Smielewski P, Czosnyka M, Steiner LA, Belestri M, Piechnik SK, Pickard JD. ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl. 2005;95:43–9.

    Article  PubMed  CAS  Google Scholar 

  18. Krasznai L, Grote EH. Acute vasoparalysis after subarachnoid haemorrhage and cerebral trauma: general reflex phenomenon? Neurol Res. 1994;16:40–4.

    PubMed  CAS  Google Scholar 

  19. Lam JM, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ. Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery. 2000;47:819–25.

    Article  PubMed  CAS  Google Scholar 

  20. Tran Dinh YR, Lot G, Benrabah R, Baroudy O, Cophignon J, Seylaz J. Abnormal cerebral vasodilation in aneurysmal subarachnoid hemorrhage: use of serial 133Xe cerebral blood flow measurement plus acetazolamide to assess cerebral vasospasm. J Neurosurg. 1993;79:490–3.

    Article  PubMed  CAS  Google Scholar 

  21. Voldby B, Enevoldsen EM. Intracranial pressure changes following aneurysm rupture. Part 1: clinical and angiographic correlations. J Neurosurg. 1982;56:186–96.

    Article  PubMed  CAS  Google Scholar 

  22. Lang EW, Diehl RR, Mehdorn HM. Cerebral autoregulation testing after aneurysmal subarachnoid hemorrhage: the phase relationship between arterial blood pressure and cerebral blood flow velocity. Crit Care Med. 2001;29:158–63.

    Article  PubMed  CAS  Google Scholar 

  23. Jakubowski J, Bell BA, Symon L, Zawirski MB, Francis DM. A primate model of subarachnoid hemorrhage: change in regional cerebral blood flow, autoregulation carbon dioxide reactivity, and central conduction time. Stroke. 1982;13:601–11.

    PubMed  CAS  Google Scholar 

  24. Denny -Brown D. The treatment of recurrent cerebrovascular symptoms and the question of “vasospasm”. Med Clin North Am. 1951;35:1457–74.

    PubMed  CAS  Google Scholar 

  25. Kassell NF, Peerless SJ, Durward QJ, Beck DW, Drake CG, Adams HP. Treatment of ischemic deficits from vasospasm with intravascular volume expansion and induced arterial hypertension. Neurosurgery. 1982;11:337–43.

    Article  PubMed  CAS  Google Scholar 

  26. Pickard JD, Boisvert DP, Graham DI, Fitch W. Late effects of subarachnoid haemorrhage on the response of the primate cerebral circulation to drug-induced changes in arterial blood pressure. J Neurol Neurosurg Psychiatry. 1979;42:899–903.

    Article  PubMed  CAS  Google Scholar 

  27. Iuliano BA, Pluta RM, Jung C, Oldfield EH. Endothelial dysfunction in a primate model of cerebral vasospasm. J Neurosurg. 2004;100:287–94.

    Article  PubMed  Google Scholar 

  28. Pluta RM, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH. Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg. 1996;84:648–54.

    Article  PubMed  CAS  Google Scholar 

  29. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45–52.

    PubMed  CAS  Google Scholar 

  30. Giller CA. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir (Wien). 1991;108:7–14.

    Article  CAS  Google Scholar 

  31. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34.

    PubMed  CAS  Google Scholar 

  32. Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004;98:1133–9. table.

    Article  PubMed  Google Scholar 

  33. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD. Intracranial hypertension: what additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien). 2004;146:131–41.

    Article  CAS  Google Scholar 

  34. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, Aigbirhio FI, Clark JC, Pickard JD, Menon DK, Czosnyka M. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;34:2404–9. 34.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are in debt to all the team participating in data collection : Mrs. Pippa Al-Rawi, Dr. Ming-Yuan Tseng, Mrs. Dott Chatfield, Mrs. Joanne Outtrim, Mrs. Anne Manktelow, Mrs. Helen Seeley, Mrs. Carole Turner, Dr. Marcella Balestreri, Dr. Magda Hiler, Dr. Luzius Steiner, Dr. Eric Schmidt, Dr. Stefan Piechnik, Dr. Andreas Raabe, Mr. Eric Guazzo, Prof. David Menon, Prof. Arun Gupta, Dr. Basil Matta, Mr. Peter Kirkpatrick, Mr. Ivan Timofeev, Mr. Pwawanjit Minhas, and all nursing and research staff of NCCU and Wolfson Brain Imaging Centre. The project was supported by National institute of Health Research Biomedical Research Centre, Cambridge University Hospital Foundation Trust—Neurosciences Theme and Senior Investigaor Award (JDP). PB was supported by “Fond de perfectionnement” of the Geneva University Hospital, The “Fond Ernst and Lucie Schmidheiny” and the “Société Académique de Genève”.

Disclosure

ICM+ software (www.neurosurg.cam.ac.uk/icmplus) is licensed by University of Cambridge and PS and MC have financial interest in a fraction of licensing fee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol P. Budohoski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijlenga, P., Czosnyka, M., Budohoski, K.P. et al. “Optimal Cerebral Perfusion Pressure” in Poor Grade Patients After Subarachnoid Hemorrhage. Neurocrit Care 13, 17–23 (2010). https://doi.org/10.1007/s12028-010-9362-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9362-1

Keywords

Navigation