Skip to main content
Log in

Nicotine and Behavioral Sensitization

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Use of tobacco products contributes to hundreds of thousands of premature deaths and untold millions of dollars in health care costs in this country each year. Nicotine is the principal neuroactive component in tobacco, but, despite ongoing research efforts, the cellular basis of its effects on behavior remains unclear. Efforts to resolve this conundrum have focused on the mesoaccumbens dopamine system, which contributes to the rewarding effects of many addictive drugs, including nicotine. The goal of this review is to outline recent advances and highlight some of the important unanswered questions regarding nicotine’s effects on neuronal excitability and synaptic plasticity within the brain reward pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albuquerque, E. X., Pereira, E. F. R., Alkondon, M., & Rogers, S. (2009). Physiological Reviews, 89(1), 73–120.

    CAS  PubMed  Google Scholar 

  • Alkondon, M., & Albuquerque, E. X. (2005). Nicotinic receptor subtypes in rat hippocampal slices are differentially sensitive to desensitization and early in vivo functional upregulation by nicotine and to block by bupropion. Journal of Pharmacology and Experimental Therapeutics, 313, 740–750.

    CAS  PubMed  Google Scholar 

  • Bencherif, M., Fowler, K., Lukas, R., & Lippiello, P. (1995). Mechanisms of up-regulation of neuronal nicotinic acetylcholine receptors in clonal cell lines and primary cultures of fetal rat brain. Journal of Pharmacology and Experimental Therapeutics, 275, 987–994.

    CAS  PubMed  Google Scholar 

  • Benwell, M. E., & Balfour, D. J. (1992). The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. British Journal of Pharmacology, 105, 849–856.

    CAS  PubMed  Google Scholar 

  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research. Brain Research Reviews, 28, 309–369.

    CAS  PubMed  Google Scholar 

  • Bolshakov, V. Y., & Siegelbaum, S. A. (1995). Regulation of hippocampal transmitter release during development and long-term potentiation. Science, 269, 1730–1734.

    CAS  PubMed  Google Scholar 

  • Bonci, A., & Malenka, R. C. (1999). Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. Journal of Neuroscience, 19, 3723–3730.

    CAS  PubMed  Google Scholar 

  • Borgland, S. L., Malenka, R. C., & Bonci, A. (2004). Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: Electrophysiological and behavioral correlates in individual rats. Journal of Neuroscience, 24, 7482–7490.

    CAS  PubMed  Google Scholar 

  • Buisson, B., & Bertrand, D. (2001). Chronic exposure to nicotine upregulates the human (alpha)4(beta)2 nicotinic acetylcholine receptor function. Journal of Neuroscience, 21, 1819–1829.

    CAS  PubMed  Google Scholar 

  • Buisson, B., Vallejo, Y. F., Green, W. N., & Bertrand, D. (2000). The unusual nature of epibatidine responses at the alpha4beta2 nicotinic acetylcholine receptor. Neuropharmacology, 39, 2561–2569.

    CAS  PubMed  Google Scholar 

  • Cadoni, C., & Di Chiara, G. (2000). Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. European Journal of Pharmacology, 387, R23–R25.

    CAS  PubMed  Google Scholar 

  • Carr, D. B., & Sesack, S. R. (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: Target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. Journal of Neuroscience, 20, 3864–3873.

    CAS  PubMed  Google Scholar 

  • Cartier, G. E., Yoshikami, D., Gray, W. R., et al. (1996). A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors. Journal of Biological Chemistry, 271, 7522–7528.

    CAS  PubMed  Google Scholar 

  • Champtiaux, N., Han, Z. Y., Bessis, A., et al. (2002). Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. Journal of Neuroscience, 22, 1208–1217.

    CAS  PubMed  Google Scholar 

  • Champtiaux, N., Gotti, C., Cordero-Erausquin, M., et al. (2003). Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. Journal of Neuroscience, 23, 7820–7829.

    CAS  PubMed  Google Scholar 

  • Charara, A., Smith, Y., & Parent, A. (1996). Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. Journal of Comparative Neurology, 364, 254–266.

    CAS  PubMed  Google Scholar 

  • Chen, B. T., Bowers, M. S., Martin, M., et al. (2008). Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron, 59, 288–297.

    CAS  PubMed  Google Scholar 

  • Christoph, G., Leonzio, R., & Wilcox, K. (1986). Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. Journal of Neuroscience, 6, 613–619.

    CAS  PubMed  Google Scholar 

  • Clarke, P., & Kumar, R. (1983). The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. British Journal of Pharmacology, 78, 329–337.

    CAS  PubMed  Google Scholar 

  • Clarke, P. B., Schwartz, R. D., Paul, S. M., Pert, C. B., & Pert, A. (1985). Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. Journal of Neuroscience, 5, 1307–1315.

    CAS  PubMed  Google Scholar 

  • Clarke, P. B., Fu, D. S., Jakubovic, A., & Fibiger, H. C. (1988). Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. Journal of Pharmacology and Experimental Therapeutics, 246, 701–708.

    CAS  PubMed  Google Scholar 

  • Coggan, J. S., Paysan, J., Conroy, W. G., & Berg, D. K. (1997). Direct recording of nicotinic responses in presynaptic nerve terminals. Journal of Neuroscience, 17, 5798–5806.

    CAS  PubMed  Google Scholar 

  • Corrigall, W. A., & Coen, K. M. (1991). Selective dopamine antagonists reduce nicotine self-administration. Psychopharmacology (Berl), 104, 171–176.

    CAS  Google Scholar 

  • Corrigall, W. A., Franklin, K. B., Coen, K. M., & Clarke, P. B. (1992). The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl), 107, 285–289.

    CAS  Google Scholar 

  • Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653, 278–284.

    CAS  PubMed  Google Scholar 

  • Corrigall, W. A., Coen, K. M., Zhang, J., & Adamson, K. L. (2001). GABA mechanisms in the pedunculopontine tegmental nucleus influence particular aspects of nicotine self-administration selectively in the rat. Psychopharmacology (Berl), 158, 190–197.

    CAS  Google Scholar 

  • Corrigall, W. A., Coen, K. M., Zhang, J., & Adamson, L. (2002). Pharmacological manipulations of the pedunculopontine tegmental nucleus in the rat reduce self-administration of both nicotine and cocaine. Psychopharmacology (Berl), 160, 198–205.

    CAS  Google Scholar 

  • Corringer, P.-J., Sallette, J., & Changeux, J.-P. (2006). Nicotine enhances intracellular nicotinic receptor maturation: A novel mechanism of neural plasticity? Journal of Physiology-Paris. The World of the Synapse: Molecular Basis, Pathologies and Drug Discovery, 99, 162–171.

    CAS  Google Scholar 

  • Crair, M. C., & Malenka, R. C. (1995). A critical period for long-term potentiation at thalamocortical synapses. Nature, 375, 325–328.

    CAS  PubMed  Google Scholar 

  • Dani, J. A., & Heinemann, S. (1996). Molecular and cellular aspects of nicotine abuse. Neuron, 16, 905–908.

    CAS  PubMed  Google Scholar 

  • Dani, J. A., Ji, D., & Zhou, F. M. (2001). Synaptic plasticity and nicotine addiction. Neuron, 31, 349–352.

    CAS  PubMed  Google Scholar 

  • Doura, M. B., Gold, A. B., Keller, A. B., & Perry, D. C. (2008). Adult and periadolescent rats differ in expression of nicotinic cholinergic receptor subtypes and in the response of these subtypes to chronic nicotine exposure. Brain Research, 1215, 40–52.

    CAS  PubMed  Google Scholar 

  • Fabian-Fine, R., Skehel, P., Errington, M. L., et al. (2001). Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. Journal of Neuroscience, 21, 7993–8003.

    CAS  PubMed  Google Scholar 

  • Feldman, D. E., Nicoll, R. A., & Malenka, R. C. (1999). Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. Journal of Neurobiology, 41, 92–101.

    CAS  PubMed  Google Scholar 

  • Fenster, C. P., Whitworth, T. L., Sheffield, E. B., Quick, M. W., & Lester, R. A. (1999). Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. Journal of Neuroscience, 19, 4804–4814.

    CAS  PubMed  Google Scholar 

  • Finnegan, T. F., Li, D. P., Chen, S. R., & Pan, H. L. (2004). Activation of mu-opioid receptors inhibits synaptic inputs to spinally projecting rostral ventromedial medulla neurons. Journal of Pharmacology and Experimental Therapeutics, 309, 476–483.

    CAS  PubMed  Google Scholar 

  • Flores, C., Rogers, S., Pabreza, L., Wolfe, B., & Kellar, K. (1992). A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Molecular Pharmacology, 41, 31–37.

    CAS  PubMed  Google Scholar 

  • Frazier, C. J., Buhler, A. V., Weiner, J. L., & Dunwiddie, T. V. (1998). Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. Journal of Neuroscience, 18, 8228–8235.

    CAS  PubMed  Google Scholar 

  • Garzón, M., Vaughan, R. A., Uhl, G. R., Kuhar, M. J., & Pickel, V. M. (1999). Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter. Journal of Comparative Neurology, 410, 197–210.

    PubMed  Google Scholar 

  • Ghosheh, O. A., Dwoskin, L. P., Miller, D. K., & Crooks, P. A. (2001). Accumulation of nicotine and its metabolites in rat brain after intermittent or continuous peripheral administration of [2′-14C]nicotine. Drug Metabolism and Disposition, 29, 645–651.

    CAS  PubMed  Google Scholar 

  • Glass, M. J., Kruzich, P. J., Colago, E. E., Kreek, M. J., & Pickel, V. M. (2005). Increased AMPA GluR1 receptor subunit labeling on the plasma membrane of dendrites in the basolateral amygdala of rats self-administering morphine. Synapse, 58, 1–12.

    CAS  PubMed  Google Scholar 

  • Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., & Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383, 713–716.

    CAS  PubMed  Google Scholar 

  • Harkness, P. C., & Millar, N. S. (2002). Changes in conformation and subcellular distribution of alpha4beta2 nicotinic acetylcholine receptors revealed by chronic nicotine treatment and expression of subunit chimeras. Journal of Neuroscience, 22, 10172–10181.

    CAS  PubMed  Google Scholar 

  • Heinemann, S., Boulter, J., Deneris, E., et al. (1990). The brain nicotinic acetylcholine receptor gene family. Progress in Brain Research, 86, 195–203.

    CAS  PubMed  Google Scholar 

  • Henningfield, J. E., Stapleton, J. M., Benowitz, N. L., Grayson, R. F., & London, E. D. (1993). Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug and Alcohol Dependence, 33, 23–29.

    CAS  PubMed  Google Scholar 

  • Ji, H., & Shepard, P. D. (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABAA receptor-mediated mechanism. Journal of Neuroscience, 27, 6923–6930.

    CAS  PubMed  Google Scholar 

  • Ji, D., Lape, R., & Dani, J. A. (2001). Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron, 31, 131–141.

    CAS  PubMed  Google Scholar 

  • Jones, S., Kornblum, J. L., & Kauer, J. A. (2000). Amphetamine blocks long-term synaptic depression in the ventral tegmental area. Journal of Neuroscience, 20, 5575–5580.

    CAS  PubMed  Google Scholar 

  • Kalivas, P. W., & Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Research Reviews, 16, 223–244.

    CAS  PubMed  Google Scholar 

  • Kalivas, P. W., Churchill, L., & Klitenick, M. A. (1993). GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience, 57, 1047–1060.

    CAS  PubMed  Google Scholar 

  • Kauer, J. A. (2004). Learning mechanisms in addiction: Synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annual Review of Physiology, 66, 447–475.

    CAS  PubMed  Google Scholar 

  • Kawai, H., & Berg, D. K. (2001). Nicotinic acetylcholine receptors containing alpha 7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure. Journal of Neurochemistry, 78, 1367–1378.

    CAS  PubMed  Google Scholar 

  • Klink, R., de Kerchove d’Exaerde, A., Zoli, M., & Changeux, J. P. (2001). Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. Journal of Neuroscience, 21, 1452–1463.

    CAS  PubMed  Google Scholar 

  • Koob, G. F. (2000). Neurobiology of addiction. Toward the development of new therapies. Annals of the New York Academy of Sciences, 909, 170–185.

    CAS  PubMed  Google Scholar 

  • Kulak, J. M., Nguyen, T. A., Olivera, B. M., & McIntosh, J. M. (1997). Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. Journal of Neuroscience, 17, 5263–5270.

    CAS  PubMed  Google Scholar 

  • Kuryatov, A., Luo, J., Cooper, J., & Lindstrom, J. (2005). Nicotine acts as a pharmacological chaperone to up-regulate human {alpha}4{beta}2 acetylcholine receptors. Molecular Pharmacology, 68, 1839–1851.

    CAS  PubMed  Google Scholar 

  • Kuryatov, A., Onksen, J., & Lindstrom, J. (2008). Roles of accessory subunits in {alpha}4{beta}2* nicotinic receptors. Molecular Pharmacology, 74, 132–143.

    CAS  PubMed  Google Scholar 

  • Lai, A., Parameswaran, N., Khwaja, M., et al. (2005). Long-term nicotine treatment decreases striatal {alpha}6* nicotinic acetylcholine receptor sites and function in mice. Molecular Pharmacology, 67, 1639–1647.

    CAS  PubMed  Google Scholar 

  • Lanca, A. J., Adamson, K. L., Coen, K. M., Chow, B. L., & Corrigall, W. A. (2000). The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: A correlative neuroanatomical and behavioral study. Neuroscience, 96, 735–742.

    CAS  PubMed  Google Scholar 

  • Lapchak, P. A., Araujo, D. M., Quirion, R., & Collier, B. (1989). Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamylcholine binding sites in the rat brain. Journal of Neurochemistry, 52, 483–491.

    CAS  PubMed  Google Scholar 

  • Laviolette, S. R., & van der Kooy, D. (2004). The neurobiology of nicotine addiction: Bridging the gap from molecules to behaviour. Nature Reviews Neuroscience, 5, 55–65.

    CAS  PubMed  Google Scholar 

  • Laviolette, S. R., Alexson, T. O., & van der Kooy, D. (2002). Lesions of the tegmental pedunculopontine nucleus block the rewarding effects and reveal the aversive effects of nicotine in the ventral tegmental area. Journal of Neuroscience, 22, 8653–8660.

    CAS  PubMed  Google Scholar 

  • Lecourtier, L., & Kelly, P. H. (2007). A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neuroscience & Biobehavioral Reviews, 31, 658–672.

    CAS  Google Scholar 

  • Louis, M., & Clarke, P. B. (1998). Effect of ventral tegmental 6-hydroxydopamine lesions on the locomotor stimulant action of nicotine in rats. Neuropharmacology, 37, 1503–1513.

    CAS  PubMed  Google Scholar 

  • Lubin, M., Erisir, A., & Aoki, C. (1999). Ultrastructural immunolocalization of the alpha 7 nAChR subunit in guinea pig medial prefrontal cortex. Annals of the New York Academy of Sciences, 868, 628–632.

    CAS  PubMed  Google Scholar 

  • Mansvelder, H. D., & McGehee, D. S. (2000). Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron, 27, 349–357.

    CAS  PubMed  Google Scholar 

  • Mansvelder, H. D., & McGehee, D. S. (2002). Cellular and synaptic mechanisms of nicotine addiction. Journal of Neurobiology, 53, 606–617.

    CAS  PubMed  Google Scholar 

  • Mansvelder, H. D., Keath, J. R., & McGehee, D. S. (2002). Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron, 33, 905–919.

    CAS  PubMed  Google Scholar 

  • Marks, M. J., Stitzel, J. A., & Collins, A. C. (1985). Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. Journal of Pharmacology and Experimental Therapeutics, 235, 619–628.

    CAS  PubMed  Google Scholar 

  • Marks, M., Burch, J., & Collins, A. (1983). Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. Journal of Pharmacology and Experimental Therapeutics, 226, 817–825.

    CAS  PubMed  Google Scholar 

  • Marks, M., Pauly, J., Gross, S., et al. (1992). Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. Journal of Neuroscience, 12, 2765–2784.

    CAS  PubMed  Google Scholar 

  • Marks, M. J., Grady, S. R., & Collins, A. C. (1993). Downregulation of nicotinic receptor function after chronic nicotine infusion. Journal of Pharmacology and Experimental Therapeutics, 266, 1268–1276.

    CAS  PubMed  Google Scholar 

  • Marubio, L. M., Gardier, A. M., Durier, S., et al. (2003). Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. European Journal of Neuroscience, 17, 1329–1337.

    CAS  PubMed  Google Scholar 

  • Mato, S., Robbe, D., Puente, N., Grandes, P., & Manzoni, O. J. (2005). Presynaptic homeostatic plasticity rescues long-term depression after chronic delta 9-tetrahydrocannabinol exposure. Journal of Neuroscience, 25, 11619–11627.

    CAS  PubMed  Google Scholar 

  • Matsumoto, M., & Hikosaka, O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447, 1111–1115.

    CAS  PubMed  Google Scholar 

  • McGehee, D. S., & Role, L. W. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology, 57, 521–546.

    CAS  PubMed  Google Scholar 

  • McGehee, D. S., & Role, L. W. (1996). Presynaptic ionotropic receptors. Current Opinion in Neurobiology, 6, 342–349.

    CAS  PubMed  Google Scholar 

  • McGehee, D. S., Heath, M. J. S., Gelber, S., Devay, P., & Role, L. W. (1995). Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269, 1692–1696.

    CAS  PubMed  Google Scholar 

  • Molinari, E. J., Delbono, O., Messi, M. L., et al. (1998). Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. European Journal of Pharmacology, 347, 131–139.

    CAS  PubMed  Google Scholar 

  • Mugnaini, M., Garzotti, M., Sartori, I., et al. (2006). Selective down-regulation of [125I]Y0-[alpha]-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine. Neuroscience, 137, 565–572.

    CAS  PubMed  Google Scholar 

  • Museo, E., & Wise, R. A. (1995). Cytisine-induced behavioral activation: Delineation of neuroanatomical locus of action. Brain Research, 670, 257–263.

    CAS  PubMed  Google Scholar 

  • Nashmi, R., Xiao, C., Deshpande, P., et al. (2007). Chronic nicotine cell specifically upregulates functional {alpha}4* nicotinic receptors: Basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. Journal of Neuroscience, 27, 8202–8218.

    CAS  PubMed  Google Scholar 

  • Nelson, M. E., Kuryatov, A., Choi, C. H., Zhou, Y., & Lindstrom, J. (2003). Alternate stoichiometries of alpha 4beta 2 nicotinic acetylcholine receptors. Molecular Pharmacology, 63, 332–341.

    CAS  PubMed  Google Scholar 

  • Nestler, E. J. (2001). Molecular basis of long-term plasticity underlying addiction. Nature Reviews. Neuroscience, 2, 119–128.

    CAS  PubMed  Google Scholar 

  • Nestler, E. J., & Aghajanian, G. K. (1997). Molecular and cellular basis of addiction. Science, 278, 58–63.

    CAS  PubMed  Google Scholar 

  • Nguyen, H. N., Rasmussen, B. A., & Perry, D. C. (2003). Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. Journal of Pharmacology and Experimental Therapeutics, 307, 1090–1097.

    CAS  PubMed  Google Scholar 

  • Nguyen, H. N., Rasmussen, B. A., & Perry, D. C. (2004). Binding and functional activity of nicotinic cholinergic receptors in selected rat brain regions are increased following long-term but not short-term nicotine treatment. Journal of Neurochemistry, 90, 40–49.

    CAS  PubMed  Google Scholar 

  • Ninkovic, M., & Hunt, S. P. (1983). Alpha-bungarotoxin binding sites on sensory neurones and their axonal transport in sensory afferents. Brain Research, 272, 57–69.

    CAS  PubMed  Google Scholar 

  • Oakman, S. A., Faris, P. L., Kerr, P. E., Cozzari, C., & Hartman, B. K. (1995). Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. Journal of Neuroscience, 15, 5859–5869.

    CAS  PubMed  Google Scholar 

  • Olale, F., Gerzanich, V., Kuryatov, A., Wang, F., & Lindstrom, J. (1997). Chronic nicotine exposure differentially affects the function of human alpha3, alpha4, and alpha7 neuronal nicotinic receptor subtypes. Journal of Pharmacology and Experimental Therapeutics, 283, 675–683.

    CAS  PubMed  Google Scholar 

  • Omelchenko, N., & Sesack, S. R. (2006). Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. Journal of Comparative Neurology, 494, 863–875.

    PubMed  Google Scholar 

  • O’Neill, M. F., Dourish, C. T., & Iversen, S. D. (1991). Evidence for an involvement of D1 and D2 dopamine receptors in mediating nicotine-induced hyperactivity in rats. Psychopharmacology (Berl), 104, 343–350.

    Google Scholar 

  • Parker, S. L., Fu, Y., McAllen, K., et al. (2004). Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: Disproportionate increase of the alpha6 subunit. Molecular Pharmacology, 65, 611–622.

    CAS  PubMed  Google Scholar 

  • Parpura, V., & Haydon, P. G. (2000). Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 8629–8634.

    CAS  PubMed  Google Scholar 

  • Peng, X., Gerzanich, V., Anand, R., Whiting, P., & Lindstrom, J. (1994). Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Molecular Pharmacology, 46, 523–530.

    CAS  PubMed  Google Scholar 

  • Peng, X., Gerzanich, V., Anand, R., Wang, F., & Lindstrom, J. (1997). Chronic nicotine treatment up-regulates alpha3 and alpha7 acetylcholine receptor subtypes expressed by the human neuroblastoma cell line SH-SY5Y. Molecular Pharmacology, 51, 776–784.

    CAS  PubMed  Google Scholar 

  • Perry, D. C., Mao, D., Gold, A. B., et al. (2007). Chronic nicotine differentially regulates {alpha}6- and beta3-containing nicotinic cholinergic receptors in rat brain. Journal of Pharmacology and Experimental Therapeutics, 322, 306–315.

    CAS  PubMed  Google Scholar 

  • Picciotto, M. R., Zoli, M., Rimondini, R., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391, 173–177.

    CAS  PubMed  Google Scholar 

  • Pidoplichko, V. I., DeBiasi, M., Williams, J. T., & Dani, J. A. (1997). Nicotine activates and desensitizes midbrain dopamine neurons. Nature, 390, 401–404.

    CAS  PubMed  Google Scholar 

  • Rahman, S., Zhang, J., & Corrigall, W. A. (2003). Effects of acute and chronic nicotine on somatodendritic dopamine release of the rat ventral tegmental area: In vivo microdialysis study. Neuroscience Letters, 348, 61–64.

    CAS  PubMed  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18, 247–291.

    CAS  PubMed  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 25–53.

    PubMed  Google Scholar 

  • Rogers, A. T., & Wonnacott, S. (1997). Differential upregulation of alpha 7 and alpha 3 subunit-containing nicotinic acetylcholine receptors in rat hippocampal and PC12 cell cultures. Biochemical Society Transactions, 25, 544S.

    CAS  PubMed  Google Scholar 

  • Rowell, P. P., & Wonnacott, S. (1990). Evidence for functional activity of up-regulated nicotine binding sites in rat striatal synaptosomes. Journal of Neurochemistry, 55, 2105–2110.

    CAS  PubMed  Google Scholar 

  • Saal, D., Dong, Y., Bonci, A., & Malenka, R. C. (2003). Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron, 37, 577–582.

    CAS  PubMed  Google Scholar 

  • Sallette, J., Pons, S., Devillers-Thiery, A., et al. (2005). Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron, 46, 595–607.

    CAS  PubMed  Google Scholar 

  • Sargent, P. B. (1993). The diversity of neuronal nicotinic acetylcholine receptors. Annual Review of Neuroscience, 16, 403–443.

    CAS  PubMed  Google Scholar 

  • Schoffelmeer, A. N. M., De Vries, T. J., Wardeh, G., van de Ven, H. W. M., & Vanderschuren, L. J. M. J. (2002). Psychostimulant-induced behavioral sensitization depends on nicotinic receptor activation. Journal of Neuroscience, 22, 3269–3276.

    CAS  PubMed  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241–263.

    CAS  PubMed  Google Scholar 

  • Schwartz, R., & Kellar, K. J. (1983). Nicotinic cholinergic receptor binding sites in the brain: Regulation in vivo. Science, 220, 214–216.

    CAS  PubMed  Google Scholar 

  • Schwartz, R. D., & Kellar, K. J. (1985). In vivo regulation of [3H]acetylcholine recognition sites in brain by nicotinic cholinergic drugs. Journal of Neurochemistry, 45, 427–433.

    CAS  PubMed  Google Scholar 

  • Semba, K., & Fibiger, H. (1992). Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro- and anterograde transport and immunohistochemical study. Journal of Comparative Neurology, 323, 387–410.

    CAS  PubMed  Google Scholar 

  • Sesack, S. R., & Pickel, V. M. (1992). Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. Journal of Comparative Neurology, 320, 145–160.

    CAS  PubMed  Google Scholar 

  • Sesack, S. R., Carr, D. B., Omelchenko, N., & Pinto, A. (2003). Anatomical substrates for glutamate-dopamine interactions: Evidence for specificity of connections and extrasynaptic actions. Annals of the New York Academy of Sciences, 1003, 36–52.

    CAS  PubMed  Google Scholar 

  • Sharma, G., & Vijayaraghavan, S. (2001). Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proceedings of the National Academy of Sciences of the United States of America, 98, 4148–4153.

    CAS  PubMed  Google Scholar 

  • Shim, I., Javaid, J. I., Wirtshafter, D., et al. (2001). Nicotine-induced behavioral sensitization is associated with extracellular dopamine release and expression of c-Fos in the striatum and nucleus accumbens of the rat. Behavioural Brain Research, 121, 137–147.

    CAS  PubMed  Google Scholar 

  • Shoaib, M., Benwell, M. E., Akbar, M. T., Stolerman, I. P., & Balfour, D. J. (1994). Behavioural and neurochemical adaptations to nicotine in rats: Influence of NMDA antagonists. British Journal of Pharmacology, 111, 1073–1080.

    CAS  PubMed  Google Scholar 

  • Stolerman, I. P., & Jarvis, M. J. (1995). The scientific case that nicotine is addictive. Psychopharmacology (Berl), 117, 2–10.

    CAS  Google Scholar 

  • Stolerman, I., Fink, R., & Jarvik, M. (1973). Acute and chronic tolerance to nicotine measured by activity in rats. Psychopharmacologia, 30, 329–342.

    CAS  PubMed  Google Scholar 

  • Thomas, M. J., Malenka, R. C., & Bonci, A. (2000). Modulation of long-term depression by dopamine in the mesolimbic system. Journal of Neuroscience, 20, 5581–5586.

    CAS  PubMed  Google Scholar 

  • Tumkosit, P., Kuryatov, A., Luo, J., & Lindstrom, J. (2006). beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic {alpha}6* nicotinic acetylcholine receptors expressed in transfected cell lines. Molecular Pharmacology, 70, 1358–1368.

    CAS  PubMed  Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews. Neuroscience, 5, 97–107.

    CAS  PubMed  Google Scholar 

  • Ungless, M. A., Whistler, J. L., Malenka, R. C., & Bonci, A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 411, 583–587.

    CAS  PubMed  Google Scholar 

  • Vallejo, Y. F., Buisson, B., Bertrand, D., & Green, W. N. (2005). Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. Journal of Neuroscience, 25, 5563–5572.

    CAS  PubMed  Google Scholar 

  • Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neuroscience and Biobehavioral Reviews, 27, 827–839.

    CAS  PubMed  Google Scholar 

  • Wada, E., Wada, K., Boulter, J., et al. (1989). Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. Journal of Comparative Neurology, 284, 314–335.

    CAS  PubMed  Google Scholar 

  • Walsh, H., Govind, A. P., Mastro, R., et al. (2008). Up-regulation of nicotinic receptors by nicotine varies with receptor subtype. Journal of Biological Chemistry, 283, 6022–6032.

    CAS  PubMed  Google Scholar 

  • Wang, F., Nelson, M. E., Kuryatov, A., et al. (1998). Chronic nicotine treatment up-regulates human alpha3 beta2 but not alpha3 beta4 acetylcholine receptors stably transfected in human embryonic kidney cells. Journal of Biological Chemistry, 273, 28721–28732.

    CAS  PubMed  Google Scholar 

  • Wise, R. A. (1988). Psychomotor stimulant properties of addictive drugs. Annals of the New York Academy of Sciences, 537, 228–234.

    CAS  PubMed  Google Scholar 

  • Wonnacott, S. (1997). Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 20, 92–98.

    CAS  PubMed  Google Scholar 

  • Yin, R., & French, E. D. (2000). A comparison of the effects of nicotine on dopamine and non-dopamine neurons in the rat ventral tegmental area: An in vitro electrophysiological study. Brain Research Bulletin, 51, 507–514.

    CAS  PubMed  Google Scholar 

  • Yu, Z. J., & Wecker, L. (1994). Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. Journal of Neurochemistry, 63, 186–194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Robert Mitchum for his helpful suggestions on an earlier draft of this manuscript and W. Green and P. Vezina for encouragement and support of our research efforts. This work was supported by NIH grants DA015918 and DA019695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. McGehee.

Additional information

Proceedings of the XIII International Symposium on Cholinergic Mechanisms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, D., McGehee, D.S. Nicotine and Behavioral Sensitization. J Mol Neurosci 40, 154–163 (2010). https://doi.org/10.1007/s12031-009-9230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9230-7

Keywords

Navigation