Skip to main content

Advertisement

Log in

NCAM Signaling Mediates the Effects of GDNF on Chronic Morphine-Induced Neuroadaptations

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for midbrain dopamine (DA) neurons, while the DA neurons in the ventral tegmental area (VTA) is a crucial part of the neural circuits associated with drug addiction. Recently, more and more evidence suggests that GDNF plays an important role in negatively regulating the neuroadaptations induced by chronic exposure to drugs, which was thought to be the neurobiological basis of drug addiction, but the underlying mechanism is still unknown. More recently, the neural cell adhesion molecule (NCAM), which plays an important role in the process of neural plasticity, has been identified as an alternative signaling receptor for GDNF. The purpose of this study was to investigate whether NCAM was involved in the effects of GDNF on the neuroadaptations induced by chronic morphine exposure. Immunostaining results showed that NCAM was widely expressed in the VTA of rats, including all the DA neurons. The results also showed that the phosphorylation of NCAM-associated FAK, but not the total NCAM, was upregulated by GDNF, and this upregulation was inhibited by pre-treatment with the NCAM function-blocking antibody. Moreover, pre-treatment with the antibody could antagonize the effect of GDNF on inhibiting the neuroadaptations induced by chronic morphine exposure, including the decreases of the number and length of neurites and the size of cell bodies of VTA dopamine neurons, as well as the increase of tyrosine hydroxylase in the VTA dopamine neurons. These results suggest that NCAM signaling is involved in the negative regulatory effects of GDNF on chronic morphine-induced neuroadaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GDNF:

Glial cell line-derived neurotrophic factor

NCAM:

Neural cell adhesion molecule

FAK:

Focal adhesion kinase

VTA:

Ventral tegmental area

DA:

Dopamine

TH:

Tyrosine hydroxylase

References

  • Alzoubi KH, Srivareerat M, Aleisa AM, Alkadhi KA (2013) Chronic caffeine treatment prevents stress-induced LTP impairment: the critical role of phosphorylated CaMKII and BDNF. J Mol Neurosci 49:11–20

    Article  CAS  PubMed  Google Scholar 

  • Barak S, Ahmadiantehrani S, Kharazia V, Ron D (2011a) Positive autoregulation of GDNF levels in the ventral tegmental area mediates long-lasting inhibition of excessive alcohol consumption. Transl Psychiatry 1

  • Barak S, Carnicella S, Yowell QV, Ron D (2011b) Glial cell line-derived neurotrophic factor reverses alcohol-induced allostasis of the mesolimbic dopaminergic system: implications for alcohol reward and seeking. J Neurosci 31:9885–9894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barker JM, Torregrossa MM, Taylor JR (2012) Low prefrontal PSA-NCAM confers risk for alcoholism-related behavior. Nat Neurosci 15:1356–1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beggs HE, Baragona SC, Hemperly JJ, Maness PF (1997) NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J Biol Chem 272:8310–8319

    Article  CAS  PubMed  Google Scholar 

  • Berhow MT, Hiroi N, Nestler EJ (1996) Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 16:4707–4715

    CAS  PubMed  Google Scholar 

  • Carnicella S, Ron D (2009) GDNF—a potential target to treat addiction. Pharmacol Ther 122:9–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chao CC, Ma YL, Chu KY, Lee EH (2003) Integrin alphav and NCAM mediate the effects of GDNF on DA neuron survival, outgrowth, DA turnover and motor activity in rats. Neurobiol Aging 24:105–116

    Article  CAS  PubMed  Google Scholar 

  • Cox ET, Brennaman LH, Gable KL, Hamer RM, Glantz LA, Lamantia AS, Lieberman JA, Gilmore JH, Maness PF, Jarskog LF (2009) Developmental regulation of neural cell adhesion molecule in human prefrontal cortex. Neuroscience 162:96–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cremer H, Chazal G, Carleton A, Goridis C, Vincent JD, Lledo PM (1998) Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc Natl Acad Sci U S A 95:13242–13247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Chiara G, North RA (1992) Neurobiology of opiate abuse. Trends Pharmacol Sci 13:185–193

    Article  PubMed  Google Scholar 

  • Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M et al (1996) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381:789–793

    Article  CAS  PubMed  Google Scholar 

  • Ghitza UE, Zhai H, Wu P, Airavaara M, Shaham Y, Lu L (2010) Role of BDNF and GDNF in drug reward and relapse: a review. Neurosci Biobehav Rev 35:157–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong P, Zheng A, Chen D, Ge W, Lv C, Zhang K, Gao X, Zhang F (2009) Effect of BDNF Val66Met polymorphism on digital working memory and spatial localization in a healthy Chinese Han population. J Mol Neurosci 38:250–256

    Article  CAS  PubMed  Google Scholar 

  • He DY, Ron D (2008) Glial cell line-derived neurotrophic factor reverses ethanol-mediated increases in tyrosine hydroxylase immunoreactivity via altering the activity of heat shock protein 90. J Biol Chem 283:12811–12818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinsby AM, Berezin V, Bock E (2004) Molecular mechanisms of NCAM function. Front Biosci 9:2227–2244

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Yao L, Hopf FW, Fan P, Jiang Z, Bonci A, Diamond I (2007) Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors. J Pharmacol Exp Ther 322:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacol (Berl) 168:44–56

    Article  CAS  Google Scholar 

  • Kalivas PW, O'Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33:166–180

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Kastin AJ, Akerstrom V, Pan W (2003) Glial cell line-derived neurotrophic factor does not enter normal mouse brain. Neurosci Lett 340:239–241

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22:3306–3311

    CAS  PubMed  Google Scholar 

  • Kolkova K, Novitskaya V, Pedersen N, Berezin V, Bock E (2000) Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J Neurosci 20:2238–2246

    CAS  PubMed  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  CAS  PubMed  Google Scholar 

  • Mackowiak M, Mordalska P, Dudys D, Korostynski M, Bator E, Wedzony K (2011) Cocaine enhances ST8SiaII mRNA expression and neural cell adhesion molecule polysialylation in the rat medial prefrontal cortex. Neuroscience 186:21–31

    Article  CAS  PubMed  Google Scholar 

  • Maldonado R (2003) The neurobiology of addiction. J Neural Transm Suppl 1–14

  • Maness PF, Beggs HE, Klinz SG, Morse WR (1996) Selective neural cell adhesion molecule signaling by Src family tyrosine kinases and tyrosine phosphatases. Perspect Dev Neurobiol 4:169–181

    CAS  PubMed  Google Scholar 

  • Markram K, Gerardy-Schahn R, Sandi C (2007) Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 144:788–796

    Article  CAS  PubMed  Google Scholar 

  • Messer CJ, Eisch AJ, Carlezon WA Jr, Whisler K, Shen L, Wolf DH, Westphal H, Collins F, Russell DS, Nestler EJ (2000) Role for GDNF in biochemical and behavioral adaptations to drugs of abuse. Neuron 26:247–257

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

  • Nicole O, Ali C, Docagne F, Plawinski L, MacKenzie ET, Vivien D, Buisson A (2001) Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci 21:3024–3033

    CAS  PubMed  Google Scholar 

  • Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867–879

    Article  CAS  PubMed  Google Scholar 

  • Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  CAS  PubMed  Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30:215–238

    Article  CAS  PubMed  Google Scholar 

  • Saffell JL, Doherty P, Tiveron MC, Morris RJ, Walsh FS (1995) NCAM requires a cytoplasmic domain to function as a neurite outgrowth-promoting neuronal receptor. Mol Cell Neurosci 6:521–531

    Article  CAS  PubMed  Google Scholar 

  • Sklair-Tavron L, Shi WX, Lane SB, Harris HW, Bunney BS, Nestler EJ (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc Natl Acad Sci U S A 93:11202–11207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith-Swintosky VL, Gozes I, Brenneman DE, D'Andrea MR, Plata-Salaman CR (2005) Activity-dependent neurotrophic factor-9 and NAP promote neurite outgrowth in rat hippocampal and cortical cultures. J Mol Neurosci 25:225–238

    Article  CAS  PubMed  Google Scholar 

  • Suder P, Bogusiewicz A, Rolka K, Laidler P, Kotlinska J, Silberring J (2003) Rat neuronal cells in primary culture as a model for nociceptin/orphanin FQ metabolism. Neurosci Lett 348:167–170

    Article  CAS  PubMed  Google Scholar 

  • Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F, Phillips HS, Goddard A, Moore MW, Buj-Bello A, Davies AM, Asai N, Takahashi M, Vandlen R, Henderson CE, Rosenthal A (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    Article  CAS  PubMed  Google Scholar 

  • Vlaskovska M, Kasakov L, Suder P, Silberring J, Terenius L (1999) Biotransformation of nociceptin/orphanin FQ by enzyme activity from morphine-naive and morphine-treated cell cultures. Brain Res 818:212–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Natural Science of China (30900417 and 30901402) and the Educational Department Science Research Foundation of Jiangsu Province (08KJB180011 and 09KJD320008). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Cao.

Additional information

Li Li Junping Cao, and Suming Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Cao, J., Zhang, S. et al. NCAM Signaling Mediates the Effects of GDNF on Chronic Morphine-Induced Neuroadaptations. J Mol Neurosci 53, 580–589 (2014). https://doi.org/10.1007/s12031-013-0224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0224-0

Keywords

Navigation