Skip to main content
Log in

Treadmill Exercise Prevents Increase of Neuroinflammation Markers Involved in the Dopaminergic Damage of the 6-OHDA Parkinson’s Disease Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) involves loss of dopaminergic neurons in the substantia nigra (SN), which can be correlated to neuroinflammatory changes with the aging of the nervous system. On the other hand, exercise can reduce the deleterious effects promoted by age, but the mechanism involved is still unclear. This study investigated the preventive exercise-induced changes on neuroinflammatory processes in a rat model of PD induced by unilateral striatal injections of 6-hydroxydopamine (6-OHDA). Adult male Wistar rats were divided into two groups: (1) sedentary (SED) or (2) exercised (EX), animals that did treadmill exercise three times per week, every other day, for 4 weeks prior to 6-OHDA or saline injection. The rats were then divided into four sub-groups: (1) sedentary saline (SED), (2) sedentary 6-OHDA (SED + 6-OHDA), (3) exercised saline (EX), and (4) exercised 6-OHDA (EX + 6-OHDA). Seven and 30 days after surgery, brains were collected for immunohistochemistry and immunoblotting for dopaminergic and neuroinflammatory markers into SN and striatum. The SED + 6-OHDA animals presented an increase in the astrocyte, microglial, and oxidative species activation. On the other hand, EX + 6-OHDA animals did not present neuroinflammatory responses and performed better apormorphine test. Our data suggest that treadmill exercise throughout life can markedly reduce the chances of dopamine decrease, reinforcing studies that showed a lower incidence of Parkinson’s disease in patients who were active during life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguiar AS Jr, Duzzioni M, Remor AP, Tristao FS, Matheus FC, Raisman-Vozari R, Latini A, Prediger RD (2016) Moderate-intensity physical exercise protects against experimental 6-hydroxydopamine-induced hemiparkinsonism through Nrf2-antioxidant response element pathway. Neurochem Res 41(1–2):64–72. doi:10.1007/s11064-015-1709-8

    Article  CAS  PubMed  Google Scholar 

  • Albrecht DS, Granziera C, Hooker JM, Loggia ML (2016) In vivo imaging of human neuroinflammation. ACS Chem Neurosci 7(4):470–483. doi:10.1021/acschemneuro.6b00056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ba F, Obaid M, Wieler M, Camicioli R, Martin WR (2016) Parkinson disease: the relationship between non-motor symptoms and motor phenotype. Can J Neurol Sci 43(2):261–267. doi:10.1017/cjn.2015.328

    Article  PubMed  Google Scholar 

  • Blandini F, Armentero MT, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14(Suppl 2):S124–S129. doi:10.1016/j.parkreldis.2008.04.015

    Article  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65(2):135–172

    Article  CAS  PubMed  Google Scholar 

  • Broom L, Marinova-Mutafchieva L, Sadeghian M, Davis JB, Medhurst AD, Dexter DT (2011) Neuroprotection by the selective iNOS inhibitor GW274150 in a model of Parkinson disease. Free Radic Biol Med 50(5):633–640. doi:10.1016/j.freeradbiomed.2010.12.026

    Article  CAS  PubMed  Google Scholar 

  • Conti A, Miscusi M, Cardali S, Germano A, Suzuki H, Cuzzocrea S, Tomasello F (2007) Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. Brain Res Rev 54(1):205–218

    Article  CAS  PubMed  Google Scholar 

  • da Silva PG, Domingues DD, de Carvalho LA, Allodi S, Correa CL (2016) Neurotrophic factors in Parkinson’s disease are regulated by exercise: evidence-based practice. J Neurol Sci 363:5–15. doi:10.1016/j.jns.2016.02.017

    Article  PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  • Di Benedetto S, Muller L, Wenger E, Duzel S, Pawelec G (2017) Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev 75:114–128. doi:10.1016/j.neubiorev.2017.01.044

    Article  PubMed  Google Scholar 

  • Earhart GM, Falvo MJ (2013) Parkinson disease and exercise. Compr Physiol 3(2):833–848. doi:10.1002/cphy.c100047

    PubMed  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54(1):15–36

    Article  CAS  PubMed  Google Scholar 

  • Garcia PC, Real CC, Britto LR (2017) The impact of short and long-term exercise on the expression of arc and AMPARs during evolution of the 6-hydroxy-dopamine animal model of Parkinson’s disease. J Mol Neurosci 61(4):542–552. doi:10.1007/s12031-017-0896-y

    Article  CAS  PubMed  Google Scholar 

  • Goes AT, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR (2014) Neuroprotective effects of swimming training in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Neuroscience 256:61–71. doi:10.1016/j.neuroscience.2013.09.042

    Article  CAS  PubMed  Google Scholar 

  • Haavik J, Toska K (1998) Tyrosine hydroxylase and Parkinson’s disease. Mol Neurobiol 16(3):285–309

    Article  CAS  PubMed  Google Scholar 

  • Hernandes MS, Britto LR, Real CC, Martins DO, Lopes LR (2010) Reactive oxygen species and the structural remodeling of the visual system after ocular enucleation. Neuroscience 170(4):1249–1260. doi:10.1016/j.neuroscience.2010.07.065

    Article  CAS  PubMed  Google Scholar 

  • Holmes MM, Galea LA, Mistlberger RE, Kempermann G (2004) Adult hippocampal neurogenesis and voluntary running activity: circadian and dose-dependent effects. J Neurosci Res 76(2):216–222

    Article  CAS  PubMed  Google Scholar 

  • Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, Gautris PP, Guerin J, Bloch B, Agid Y, Hirsch EC (1996) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Transm (Vienna) 103(8–9):1043–1052

    Article  CAS  Google Scholar 

  • Jang Y, Koo JH, Kwon I, Kang EB, Um HS, Soya H, Lee Y, Cho JY (2017) Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice. Brain Res 1655:186–193. doi:10.1016/j.brainres.2016.10.029

    Article  CAS  PubMed  Google Scholar 

  • Kadastik-Eerme L, Rosenthal M, Paju T, Muldmaa M, Taba P (2015) Health-related quality of life in Parkinson’s disease: a cross-sectional study focusing on non-motor symptoms. Health Qual Life Outcomes 13:83. doi:10.1186/s12955-015-0281-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwok JY, Choi KC, Chan HY (2016) Effects of mind-body exercises on the physiological and psychosocial well-being of individuals with Parkinson’s disease: a systematic review and meta-analysis. Complement Ther Med 29:121–131. doi:10.1016/j.ctim.2016.09.016

    Article  PubMed  Google Scholar 

  • L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy of Parkinson’s disease. CNS Neurol Disord Drug Targets 9(3):349–372

    Article  PubMed  Google Scholar 

  • LaHue SC, Comella CL, Tanner CM (2016) The best medicine? The influence of physical activity and inactivity on Parkinson’s disease. Mov Disord 31(10):1444–1454. doi:10.1002/mds.26728

    Article  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

  • Lau YS, Patki G, Das-Panja K, Le WD, Ahmad SO (2011) Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. Eur J Neurosci 33(7):1264–1274. doi:10.1111/j.1460-9568.2011.07626.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Park CG, Choi M (2016) Regular exercise and related factors in patients with Parkinson’s disease: applying zero-inflated negative binomial modeling of exercise count data. Appl Nurs Res 30:164–169. doi:10.1016/j.apnr.2015.08.002

    Article  PubMed  Google Scholar 

  • Li M, Dai FR, Du XP, Yang QD, Chen Y (2012) Neuroprotection by silencing iNOS expression in a 6-OHDA model of Parkinson’s disease. J Mol Neurosci 48(1):225–233. doi:10.1007/s12031-012-9814-5

    Article  PubMed  Google Scholar 

  • Lotharius J, O'Malley KL (2000) The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 275(49):38581–38588

    Article  CAS  PubMed  Google Scholar 

  • Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD (2016) The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxidative Med Cell Longev 2016:8590578. doi:10.1155/2016/8590578

    Article  Google Scholar 

  • Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT (2009) Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J Neurochem 110(3):966–975. doi:10.1111/j.1471-4159.2009.06189.x

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Petzinger GM, Walsh JP, Akopian G, Hogg E, Abernathy A, Arevalo P, Turnquist P, Vuckovic M, Fisher BE, Togasaki DM, Jakowec MW (2007) Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 27(20):5291–5300

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29(13):1583–1590. doi:10.1002/mds.25945

    Article  PubMed  Google Scholar 

  • Raicevic N, Mladenovic A, Perovic M, Miljkovic D, Trajkovic V (2005) The mechanisms of 6-hydroxydopamine-induced astrocyte death. Ann N Y Acad Sci 1048:400–405

    Article  CAS  PubMed  Google Scholar 

  • Real CC, Ferreira AF, Chaves-Kirsten GP, Torrao AS, Pires RS, Britto LR (2013) BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of Parkinson’s disease. Neuroscience 237:118–129. doi:10.1016/j.neuroscience.2013.01.060

    Article  CAS  PubMed  Google Scholar 

  • Ribas CG, Alves da Silva L, Correa MR, Teive HG, Valderramas S (2017) Effectiveness of exergaming in improving functional balance, fatigue and quality of life in Parkinson’s disease: a pilot randomized controlled trial. Parkinsonism Relat Disord 38:13–18. doi:10.1016/j.parkreldis.2017.02.006

    Article  PubMed  Google Scholar 

  • Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL (2015) Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging 36(2):1194–1208. doi:10.1016/j.neurobiolaging.2014.10.028

    Article  CAS  PubMed  Google Scholar 

  • Russo MV, McGavern DB (2015) Immune surveillance of the CNS following infection and injury. Trends Immunol 36(10):637–650. doi:10.1016/j.it.2015.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung YH, Kim SC, Hong HP, Park CY, Shin MS, Kim CJ, Seo JH, Kim DY, Kim DJ, Cho HJ (2012) Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson’s disease mice. Life Sci 91(25–26):1309–1316. doi:10.1016/j.lfs.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  • Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(Suppl 1):318–324. doi:10.1111/jnc.13691

    Article  CAS  PubMed  Google Scholar 

  • Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, Wang F, Baba T, Tayra JT, Morimoto T, Jing M, Kikuchi Y, Kuramoto S, Agari T, Miyoshi Y, Fujino H, Obata F, Takeda I, Furuta T, Date I (2010) Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res 1310:200–207. doi:10.1016/j.brainres.2009.10.075

    Article  CAS  PubMed  Google Scholar 

  • Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, Souza PS, Quevedo J, Souza CT, Pinho RA (2014) Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res Bull 108:106–112. doi:10.1016/j.brainresbull.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  • Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, Shankar SK (2012) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 37(2):358–369. doi:10.1007/s11064-011-0619-7

    Article  CAS  PubMed  Google Scholar 

  • Wu SY, Wang TF, Yu L, Jen CJ, Chuang JI, Wu FS, Wu CW, Kuo YM (2011) Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun 25:135–146. doi:10.1016/j.bbi.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Park Y, Huang X, Hollenbeck A, Blair A, Schatzkin A, Chen H (2010) Physical activities and future risk of Parkinson disease. Neurology 75(4):341–348. doi:10.1212/WNL.0b013e3181ea1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin HH (2010) The sensorimotor striatum is necessary for serial order learning. J Neurosci 30(44):14719–14723. doi:10.1523/JNEUROSCI.3989-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon MC, Shin MS, Kim TS, Kim BK, Ko IG, Sung YH, Kim SE, Lee HH, Kim YP, Kim CJ (2007) Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci Lett 423:12–17

    Article  CAS  PubMed  Google Scholar 

  • Zigmond MJ, Stricker EM (1984) Parkinson’s disease: studies with an animal model. Life Sci 35(1):5–18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by The São Paulo Research Foundation (FAPESP, Brazil), Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil), Research Center on Applied Neuroscience (NAPNA, Brazil), and The National Council for Scientific and Technological Development (CNPq, Brazil). Thanks are also due to Adilson S. Alves for the technical assistance, Ellen Claire Ford for the help in some experiments during her undergraduation internship (Minority Health and Health Disparities International Research Training (MHIRT), USA), and Elisa Guimarães-Souza for the grammar review. CCR was the recipient of a fellowship from FAPESP (2008/58716-3), and PCG was the recipient of a fellowship from CAPES.

Author information

Authors and Affiliations

Authors

Contributions

CCR and LRGB designed the experiments. CCR and PCG collected and analyzed the data and wrote the paper. All the authors discussed the data, edited, commented on the manuscript, and approved the final version of the manuscript.

Corresponding author

Correspondence to Caroline Cristiano Real.

Ethics declarations

The experiments were carried out in accordance with the guidelines of the National Council for the control of Animal Experimentation (CONCEA, Brazil), a constituent body of the Ministry of Science, Technology, and Innovation (MCTI, Brazil). All protocols were approved by the Ethics Committee for Animal Research of the Institute of Biomedical Sciences of the University of São Paulo (CEUA-ICB/USP, Brazil) (protocol number 14/2009).

Conflict of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been financial support from FAPESP to CCR and from CAPES to PCG. FAPESP and CNPq supported LRGB.

Electronic Supplementary Material

Supplementary Figure 1

Double staining for tyrosine hydroxylase (TH) and neuronal nuclei (NeuN) in the substantia nigra. There is a NeuN and TH decrease in the experimental side of SED + 6-OHDA group indicating that there was neuronal loss, not only TH down-regulation. (GIF 314 kb)

High resolution image (TIFF 13596 kb)

Supplementary Table 1

(DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Real, C.C., Garcia, P.C. & Britto, L.R.G. Treadmill Exercise Prevents Increase of Neuroinflammation Markers Involved in the Dopaminergic Damage of the 6-OHDA Parkinson’s Disease Model. J Mol Neurosci 63, 36–49 (2017). https://doi.org/10.1007/s12031-017-0955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0955-4

Keywords

Navigation