Skip to main content

Advertisement

Log in

LincRNa-p21: function and mechanism in cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In view of the rapid development of gene chips and high-throughput sequencing technology, noncoding RNAs (ncRNas) form a high percentage of the mammalian genome. Two major subgroups of ncRNAs that have been identified are the long ncRNAs (lncRNas) and the microRNAs. A number of studies in the past few years have showed crucial functions for lncRNas in cancer. LincRNa-p21 as a p53-dependent transcriptional target gene and a potential diagnostic marker is involved in proliferation, cell cycle, metabolism and reprogramming. In addition, more researches revealed that lincRNa-p21 is associated with cancer progression and contributed to the treatment and prognosis of cancer. In this review, we briefly summarize the function and molecular mechanisms of lincRNa-p21 in cancer and its regulation for the genes expression .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gao D, Xiao Z, Li HP, Han DH, Zhang YP. LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple Myeloma. J Cell Biochem. 2017. doi:10.1002/jcb.25987.

    Google Scholar 

  2. Singh KK, Matkar PN, Pan Y, Quan A, Gupta V, Teoh H, et al. Endothelial long non-coding RNAs regulated by oxidized LDL. Mol Cell Biochem. 2017. doi:10.1007/s11010-017-2984-2.

    Google Scholar 

  3. Tang J, Xie Y, Xu X, Yin Y, Jiang R, Deng L, et al. Bidirectional transcription of Linc00441 and RB1 via H3K27 modification-dependent way promotes hepatocellular carcinoma. Cell Death Dis. 2017;8(3):e2675.

    Article  CAS  PubMed  Google Scholar 

  4. Zhai H, Fesler A, Schee K, Fodstad Ø, Flatmark K, Ju J. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer. 2013;12(4):261–6.

    Article  CAS  PubMed  Google Scholar 

  5. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding rna induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.

    Article  CAS  PubMed  Google Scholar 

  7. Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale J, De S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dimitrova N, Zamudio J, Jong R, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 In cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, et al. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014;130(17):1452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature. 1993;362(6423):857–60.

    Article  CAS  PubMed  Google Scholar 

  11. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.

    Article  CAS  PubMed  Google Scholar 

  12. Yin Y, Stephen CW, Luciani MG, Fåhraeus R. p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol. 2002;4(6):462–7.

    Article  CAS  PubMed  Google Scholar 

  13. Wei G, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90(4):595–606.

    Article  Google Scholar 

  14. Lin Liu DMSR. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol. 1999;19(2):1202–9.

    Article  Google Scholar 

  15. Tang SS, Zheng BY, Xiong XD. LincRNA-p21: implications in human diseases. Int J Mol Sci. 2015;16(8):18732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Toyama T, Iwase H, Watson P, Muzik H, Saettler E, Magliocco A, et al. Suppression of ING1 expression in sporadic breast cancer. Oncogene. 1999;18(37):5187–93.

    Article  CAS  PubMed  Google Scholar 

  17. He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol. 1951;23(22):104–16.

    Google Scholar 

  18. Gunduz M, Demircan K, Gunduz E, Katase N, Tamamura R, Nagatsuka H. Potential usage of ING family members in cancer diagnostics and molecular therapy. Curr Drug Targets. 2009;10(5):465–76.

    Article  CAS  PubMed  Google Scholar 

  19. Tran UM, Rajarajacholan U, Soh J, Kim T, Thalappilly S, Sensen CW, et al. LincRNA-p21 acts as a mediator of ING1b-induced apoptosis. Cell Death Disease. 2015;6(3):478.

    Article  Google Scholar 

  20. Zheng J, Dong P, Mao Y, Chen S, Wu X, Li G, et al. LincRNA-p21 inhibits hepatic stellate cells activation and liver fibrogenesis via p21. FEBS J. 2015;282(24):4810–21.

    Article  CAS  PubMed  Google Scholar 

  21. Braun AC. On the origin of the cancer cells. Am Sci. 1970;58(3):307–20.

    CAS  PubMed  Google Scholar 

  22. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.

    Article  CAS  PubMed  Google Scholar 

  23. Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.

    Article  CAS  PubMed  Google Scholar 

  24. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIF targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.

    Article  CAS  PubMed  Google Scholar 

  25. Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013;53(1):88–100.

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  27. Polo J, Anderssen E, Walsh R, Schwarz B, Nefzger C, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151(7):1617–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Xu Y, He M, Zhang M, Cui F, Lu L, et al. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming. Cell Stem Cell. 2014;15(5):2335–43.

    Article  Google Scholar 

  29. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, Viukov S, et al. Corrigendum: deterministic direct reprogramming of somatic cells to pluripotency. Nature. 2013;502(7469):65–70.

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi K, Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457–61.

    Article  CAS  PubMed  Google Scholar 

  31. Loewer S, Cabili MN, Guttman M, Loh YH, Thomas K, Park IH, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet. 2010;42(12):1113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin N, Chang KY, Li Z, Gates K, Rana Z, Dang J, et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bao X, Wu H, Zhu X, Guo X, Hutchins AP, Luo Z, et al. The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Res. 2014;25(1):80–92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci Robbins ES, et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141(7):1659–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spurlock CF, Tossberg JT, Matlock BK, Olsen NJ, Aune TM. Methotrexate inhibits NF-κB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol. 2014;66(11):2947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang N, Fu Y, Zhang H, Hui S, Zhu N, Yang G. LincRNA-p21 activates endoplasmic reticulum stress and inhibits hepatocellular carcinoma. Oncotarget. 2015;6(29):28151–63.

    Article  PubMed  Google Scholar 

  37. Işın M, Uysaler E, Özgür E, Yücel ÖB, Gezer U, Dalay N. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet. 2015;6:168.

    PubMed  PubMed Central  Google Scholar 

  38. Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934:72–9.

    Article  CAS  PubMed  Google Scholar 

  39. Zengle G, Xu B, Chen M. Long chain non-coding RNA in the progress of prostate cancer. J Southeast Univ (Med Sci Ed). 2016;35(3):431–6.

    Google Scholar 

  40. Wang R, Zhang X, Wang C-X. Research advance on long non-coding RNA in cancer. J Pract Hosp. 2016;13(3):9–13.

    Google Scholar 

  41. Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Castellazzi M, Spyrou G, La VN, Dangy JP, Piu F, Yaniv M, et al. Overexpression of c-jun, junB, or junD affects cell growth differently. Proc Natl Acad Sci USA. 1991;88(20):8890–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong Z, Watts R, Sun Y, Zhan S, Colburn N. Progressive elevation of ap-1 activity during preneoplastic-to-neoplastic progression as modeled in mouse jb6 cell variants. Int J Oncol. 1995;7(2):359–64.

    CAS  PubMed  Google Scholar 

  44. Wang G, Li Z, Zhao Q, Zhu Y, Zhao C, Li X, et al. LincRNA-p21 enhances the sensitivity of radiotherapy for human colorectal cancer by targeting the Wnt/β-catenin signaling pathway. Oncol Rep. 2014;31(4):1839–45.

    CAS  PubMed  Google Scholar 

  45. White BD, Chien AJ, Dawson DW. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012;142(2):219–32.

    Article  CAS  PubMed  Google Scholar 

  46. Kendziorra E, Ahlborn K, Spitzner M, Emons G, Gaedcke J, Kramer F, et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis. 2011;32(12):1824–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waaler J, Machon O, von Kries JP, Wilson SR, Lundenes E, Wedlich D, et al. Novel synthetic antagonists of canonical Wnt signaling inhibit colorectal cancer cell growth. Can Res. 2011;71(1):197–205.

    Article  CAS  Google Scholar 

  48. Michael B. Crosstalk between Wnt signaling and RNA processing in colorectal cancer. J Cancer. 2013;4(2):96–103.

    Article  Google Scholar 

  49. Castellano JJ, Navarro A, Vinolas N, Marrades RM, Moises J, Cordeiro A, et al. LincRNA-p21 impacts prognosis in resected non-small-cell lung cancer patients through angiogenesis regulation. J Thorac Oncol. 2016;11(12):2173–82.

    Article  PubMed  Google Scholar 

  50. Battegay EJ. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF & #946;-receptors. J Cell Biol. 1994;125(4):917–28.

    Article  CAS  PubMed  Google Scholar 

  51. Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010;3(8):775–81.

    PubMed  PubMed Central  Google Scholar 

  52. de Mello RA, Costa BM, Reis RM, Hespanhol V. Insights into angiogenesis in non-small cell lung cancer: molecular mechanisms, polymorphic genes, and targeted therapies. Recent patents on anti-cancer drug discovery. 2012;7(1):118–31(14).

  53. Toh H, Cao M, Daniels E, Bateman A. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model. PLoS ONE. 2013;8(5):e64989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, et al. Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. J Urol. 2014;192(2):583–92.

    Article  CAS  PubMed  Google Scholar 

  55. Yang F, Zhang H, Mei Y, Wu M. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2014;53(1):88–100.

    Article  CAS  PubMed  Google Scholar 

  56. Blume CJ, Hotz-Wagenblatt A, Hullein J, Sellner L, Jethwa A, Stolz T, et al. p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 2015;29(10):2015–23.

    Article  CAS  PubMed  Google Scholar 

  57. Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144(part A):87–90.

    CAS  PubMed  Google Scholar 

  58. Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Disease. 2015;6(3):e1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Grant Number 81273116) and the Science Foundation of Guangdong Medical University (Grant Number M2013004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanwen Tang.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Liang, H., Yang, H. et al. LincRNa-p21: function and mechanism in cancer. Med Oncol 34, 98 (2017). https://doi.org/10.1007/s12032-017-0959-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-0959-5

Keywords

Navigation