Skip to main content

Advertisement

Log in

Defining Structural Domains of an Intrinsically Disordered Protein: Sic1, the Cyclin-Dependent Kinase Inhibitor of Saccharomyces cerevisiae

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The cyclin-dependent kinase inhibitor Sic1 is an intrinsically disordered protein (IDP) involved in cell–cycle regulation in the yeast Saccharomyces cerevisiae. Notwithstanding many studies on its biological function, structural characterization has been attempted only recently, fostering the development of production and purification protocols suitable to yield large amounts of this weakly expressed protein. In this study, we describe the identification of protein domains by the heterologous expression, purification, and characterization of Sic1-derived fragment. Four C-terminal fragments (Sic1C-ter) were produced based on functional studies and limited-proteolysis results. The N-terminal fragment (Sic11–186) was complementary to the most stable C-terminal fragments (Sic1Δ186). Both Sic11–186 and Sic1C-ter fragments were, in general, less susceptible to spontaneous proteolysis than the full-length protein. The boundaries of the C-terminal fragments turned out to be crucial for integrity of the recombinant proteins and required two rounds of design and production. Sic1 fragments were purified by a simple procedure, based on their resistance to heat treatment, at the amount and purity required for structural characterization. Circular dichroism (CD) measurements and nuclear magnetic resonance (NMR) spectra of N- and C-terminal fragments confirm their disordered nature but reveal minor structural differences that may reflect their distinct functional roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fink, A. L. (2005). Natively unfolded proteins. Current Opinion in Structural Biology, 15, 35–41.

    Article  CAS  Google Scholar 

  2. Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 41, 415–427.

    Article  CAS  Google Scholar 

  3. Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., et al. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research, 32, 1037–1049.

    Article  CAS  Google Scholar 

  4. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., et al. (2001). Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19, 26–59.

    Article  CAS  Google Scholar 

  5. Vacic, V., Oldfield, C. J., Mohan, A., Radivojac, P., Cortese, M. S., Uversky, V. N., et al. (2007). Characterization of molecular recognition features, MoRFs, and their binding partners. Journal of Proteome Research, 6, 2351–2366.

    Article  CAS  Google Scholar 

  6. Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2005). Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling. Journal of Molecular Recognition, 18, 343–384.

    Article  CAS  Google Scholar 

  7. Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., & Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry, 41, 6573–6582.

    Article  CAS  Google Scholar 

  8. Dunker, A. K., & Obradovic, Z. (2001). The protein trinity–linking function and disorder. Nature Biotechnology, 19, 805–806.

    Article  CAS  Google Scholar 

  9. Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208.

    Article  CAS  Google Scholar 

  10. Wright, P. E., & Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 293, 321–331.

    Article  CAS  Google Scholar 

  11. Dyson, H. J., & Wright, P. E. (2002). Coupling of folding and binding for unstructured proteins. Current Opinion in Structural Biology, 12, 54–60.

    Article  CAS  Google Scholar 

  12. Uversky, V. N., Oldfield, C. J., Midic, U., Xie, H., Xue, B., Vucetic, S., et al. (2009). Unfoldomics of human diseases: Linking protein intrinsic disorder with diseases. BMC Genomics, 10(1), S7.

    Article  Google Scholar 

  13. Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradovic, Z., & Dunker, A. K. (2002). Intrinsic disorder in cell-signaling and cancer-associated proteins. Journal of Molecular Biology, 323, 573–584.

    Article  CAS  Google Scholar 

  14. Schwob, E., Bohm, T., Mendenhall, M., & Nasmyth, K. (1994). The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell, 79, 233–244.

    Article  CAS  Google Scholar 

  15. Mendenhall, M. D., & Hodge, A. E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 62, 1191–1243.

    CAS  Google Scholar 

  16. Verma, R., Annan, R. S., Huddleston, M. J., Carr, S. A., Reynard, G., & Deshaies, R. J. (1997). Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science, 278, 455–460.

    Article  CAS  Google Scholar 

  17. Deshaies, R. J., & Ferrell, J. E., Jr. (2001). Multisite phosphorylation and the countdown to S phase. Cell, 107, 819–822.

    Article  CAS  Google Scholar 

  18. Hodge, A., & Mendenhall, M. (1999). The cyclin-dependent kinase inhibitory domain of the yeast Sic1 protein is contained within the C-terminal 70 amino acids. Molecular and General Genetics, 262, 55–64.

    Article  CAS  Google Scholar 

  19. Borg, M., Mittag, T., Pawson, T., Tyers, M., Forman-Kay, J. D., & Chan, H. S. (2007). Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proceedings of the National Academy of Sciences of the United States of America, 104, 9650–9655.

    Article  CAS  Google Scholar 

  20. Klein, P., Pawson, T., & Tyers, M. (2003). Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site. Current Biology, 13, 1669–1678.

    Article  CAS  Google Scholar 

  21. Escoté, X., Zapater, M., Clotet, J., & Posas, F. (2004). Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nature Cell Biology, 10, 997–1002.

    Article  Google Scholar 

  22. Brocca, S., Šamalikova, M., Uversky, V. N., Lotti, M., Vanoni, M., Alberghina, L., et al. (2009). Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1. Proteins, 76, 731–746.

    Article  CAS  Google Scholar 

  23. Mittag, T., Orlicky, S., Choy, W. Y., Tang, X., Lin, H., Sicheri, F., et al. (2008). Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proceedings of the National Academy of Sciences of the United States of America, 105, 17772–17777.

    Article  CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  25. Matsumura, I., & Rowe, L. A. (2005). Whole plasmid mutagenic PCR for directed protein evolution. Order propensity of a disordered protein, Sic1. Biomolecular Engineering, 22, 73–79.

    Article  CAS  Google Scholar 

  26. Hanahan, D. (1985). Techniques for transformation of E. coli. In D. M. Glover (Ed.), DNA cloning: A practical approach (p. 109). Mc Lean, VA: IRL press.

    Google Scholar 

  27. Promega Subcloning Notebook 44. http://www.promega.com./guides/subcloning_guide/ .

  28. The Qiaexpressionist (June 2003). http://qiagen.com/literature/default.

  29. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  30. Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from CD spectra: Comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 282, 252–260.

    Article  Google Scholar 

  31. Hodge, A., & Mendenhall, M. (1999). The cyclin-dependent kinase inhibitory domain of the yeast Sic1 protein is contained within the C-terminal 70 amino acids. Molecular and General Genetics, 1, 55–64.

    Google Scholar 

  32. Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27, 527–533.

    Article  CAS  Google Scholar 

  33. Cortese, M. S., Baird, J. P., Uversky, V. N., & Dunker, A. K. (2005). Uncovering the unfoldome: Enriching cell extracts for unstructured proteins by acids treatment. Journal of Proteome Research, 4, 1610–1618.

    Article  CAS  Google Scholar 

  34. Csizmok, V., Szollosi, E., Friedriich, P., & Tompa, P. (2006). A novel two-dimensional electrophoresis technique for the identification of intrinsically unstructured proteins. Molecular and Cellular Proteomics, 5, 265–273.

    Article  CAS  Google Scholar 

  35. Galea, C. A., Pagala, V. R., Obenauer, J. C., Park, C. G., Slaughter, C. A., & Kriwacki, R. W. (2006). Proteomic studies of the intrinsically unstructured mammalian proteome. Journal of Proteome Research, 5, 2839–2848.

    Article  CAS  Google Scholar 

  36. Frottin, F., Martinez, A., Peynot, P., Mitra, S., Holz, R. C., Giglione, C., et al. (2006). The proteomics of N-terminal methionine cleavage. Molecular and Cellular Proteomics, 5, 2336–2349.

    Article  CAS  Google Scholar 

  37. Woody, R. W. (2009). Circular dichroism of intrinsically disordered proteins. In V. N. Uversky, S. Longhi (Eds.), Instrumental analysis of intrinsically disordered proteins: Assessing structure and conformation (pp. 303–321). New York, NY: John Wiley and Sons Ltd.

  38. Mulder, F. A. A., Lundqvist, M., & Scheek, R. (2009). Nuclear magnetic resonance spectroscopy applied to (intrinsically) disordered proteins. In V. N. Uversky, S. Longhi (Eds.), Instrumental analysis of intrinsically disordered proteins: Assessing structure and conformation (pp. 61–87). New York, NY: John Wiley and Sons Ltd.

  39. Crimmins, D. L., & Kao, J. L. (2007). The human cardiac hormone fragment N-terminal pro B-type natriuretic peptide is an intrinsically unstructured protein. Archives of Biochemistry and Biophysics, 461, 242–246.

    Article  CAS  Google Scholar 

  40. Hébrard, E., Bessin, Y., Michon, T., Longhi, S., Uversky, V. N., Delalande, F., et al. (2009). Intrinsic disorder in viral proteins genome-linked: Experimental and predictive analyses. Virology Journal, 16, 6–23.

    Google Scholar 

  41. Tompa, P., Fuxreiter, M., Oldfield, C. J., Simon, I., Dunker, A. K., & Uversky, V. N. (2009). Close encounters of the third kind: disordered domains and the interactions of proteins. Bioessays, 31, 328–335.

    Article  CAS  Google Scholar 

  42. Galea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827–838.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Henriette Molinari for competent assistance acquiring and interpreting NMR spectra and Lilia Alberghina for helpful discussions. This study was supported by grants MIUR-Italbionet to Lilia Alberghina and grants from the University Milano-Bicocca (“Fondo Ateneo per la Ricerca”) to R.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Brocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brocca, S., Testa, L., Šamalikova, M. et al. Defining Structural Domains of an Intrinsically Disordered Protein: Sic1, the Cyclin-Dependent Kinase Inhibitor of Saccharomyces cerevisiae . Mol Biotechnol 47, 34–42 (2011). https://doi.org/10.1007/s12033-010-9309-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9309-y

Keywords

Navigation