Skip to main content
Log in

Improved covalent functionalization of multi-walled carbon nanotubes using ascorbic acid for poly(amide–imide) composites having dopamine linkages

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Ascorbic acid has been covalently linked to multi-walled carbon nanotubes (MWCNTs). The structures of the functionalized MWCNTs were characterized with Fourier-transform infrared spectroscopy. Thermogravimetric analysis results also demonstrated the presence of organic portions of the functionalized MWCNTs. Polymer composites based on a nanostructured poly(amide–imide) (PAI) were fabricated by an ex situ technique with 5, 10 and 15% loading by weight. Composite films were made by the solvent casting method. The thermal stability of the composites increased with even a small amount of modified MWCNT added. Tensile tests were conducted and depicted an increase in the elastic modulus with increasing MWCNTs content. X-ray diffraction study of the composites also indicated that the composites incorporated MWCNTs in the polymer chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Moradi O, Yari M, Zare K, Mirza B and Najafi F 2012 Fullerenes, Nanotubes Carbon Nanostruct. 20 138

    Article  Google Scholar 

  2. Shokrieh M and Rafiee R 2010 Mech. Compos. Mater. 46 155

    Article  Google Scholar 

  3. Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W, Bengio E A, ter Waarbeek R F, de Jong J J and Hoogerwerf R E 2013 Science 339 182

  4. Chen W -J, Li Y -L, Chiang C -L, Kuan C -F, Kuan H -C, Lin T -T and Yip M -C 2010, J. Phys. Chem. Solids 71 431

    Article  Google Scholar 

  5. Saligheh O, Forouharshad M, Arasteh R, Eslami-Farsani R, Khajavi R and Roudbari B Y 2013 J. Polym. Res. 20 1

    Article  Google Scholar 

  6. Brosseau C 2011 Surf. Coat. Technol. 206 753

    Article  Google Scholar 

  7. Ryan K P, Cadek M, Nicolosi V, Blond D, Ruether M, Armstrong G, Swan H, Fonseca A, Nagy J B and Maser W K 2007 Compos. Sci. Technol. 67 1640

    Article  Google Scholar 

  8. Kuan C -F, Chen W -J, Li Y -L, Chen C -H, Kuan H -C and Chiang C -L 2010, J. Phys. Chem. Solids 71 539

    Article  Google Scholar 

  9. Oki A, Adams L, Luo Z, Osayamen E, Biney P and Khabashesku V 2008 J. Phys. Chem. Solids 69 1194

    Article  Google Scholar 

  10. Bernal M M, Liras M, Verdejo R, López-Manchado M A, Quijada-Garrido I and París R 2011 Polymer 52 5739

    Article  Google Scholar 

  11. Gaina C, Ursache O, Gaina V and Ionita D 2011 Polym. Plast. Technol. Eng. 51 65

    Article  Google Scholar 

  12. Osazuwa O, Kontopoulou M, Xiang P, Ye Z and Docoslis A 2012 Proc. Eng. 42 1543

    Article  Google Scholar 

  13. Zhang A, Tang M, Luan J and Li J 2012 Mater. Lett. 67 283

    Article  Google Scholar 

  14. Mallakpour S and Zadehnazari A 2013 Carbon 56 27

    Article  Google Scholar 

  15. de Freitas J N, Maubane M S, Bepete G, van Otterlo W A L, Coville N J and Nogueira A F 2013 Synth. Met. 176 55

  16. Shi X, Wang J, Jiang B and Yang Y 2013 Polymer 54 1167

  17. Mallakpour S, Hajipour A R and Hassan Shahmohammadi M 2003 J. Appl. Polym. Sci. 89 116

    Article  Google Scholar 

  18. Mallakpour S, Hatami M, Ensafi A A and Karimi-Maleh H 2011 Chin. Chem. Lett. 22 185

    Article  Google Scholar 

  19. Mallakpour S and Zadehnazari A 2014 J. Solid State Chem. 211 136

    Article  Google Scholar 

  20. Mallakpour S and Zadehnazari A 2012 Polym. Plast. Technol. Eng. 51 1090

    Article  Google Scholar 

  21. Mallakpour S and Zadehnazari A 2014 Bull. Mater. Sci. 37 1065

    Article  Google Scholar 

  22. Mallakpour S and Zadehnazari A 2014 Polym. Int. 63 1203

    Article  Google Scholar 

  23. Al-Saleh M H and Sundararaj U 2009 Carbon 47 1738

    Article  Google Scholar 

  24. Peng F, Pan F, Sun H, Lu L and Jiang Z 2007 J. Membr. Sci. 300 13

    Article  Google Scholar 

  25. Mohiuddin M and Hoa S 2011 Compos. Sci. Technol. 72 21

    Article  Google Scholar 

  26. Lee H -J, Oh S -J, Choi J -Y, Kim J -W, Han J, Tan L -S and Baek J -B 2005, Chem. Mater. 17 5057

    Article  Google Scholar 

  27. Hsiao S -H, Guo W, Lee W -F, Kung Y -C and Lee Y -J 2011, Mater. Chem. Phys. 130 1086

    Article  Google Scholar 

  28. Perez-Cabero M, Rodrıguez-Ramos I and Guerrero-Ruız A 2003 J. Catal. 215 305

    Article  Google Scholar 

  29. Huxtable S T, Cahill D G, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M S, Siddons G and Shim M 2003 Nat. Mater. 2 731

    Article  Google Scholar 

  30. Bucsi A and Rychlý J 1992 Polym. Degrad. Stab. 38 33

    Article  Google Scholar 

  31. Van Krevelen D 1975 Polymer 16 615

Download references

Acknowledgements

We are grateful to the Research Affairs Division of Isfahan University of Technology (IUT), National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry Research (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SHADPOUR MALLAKPOUR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MALLAKPOUR, S., ZADEHNAZARI, A. Improved covalent functionalization of multi-walled carbon nanotubes using ascorbic acid for poly(amide–imide) composites having dopamine linkages. Bull Mater Sci 40, 213–222 (2017). https://doi.org/10.1007/s12034-017-1358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1358-4

Keywords

Navigation