Skip to main content
Log in

Pseudo-Jahn–Teller effects in two-dimensional silicene, germanene and stanene: a crystal orbital vibronic coupling density analysis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The presence of the pseudo-Jahn–Teller (PJT) effect has been investigated in the heavier analogues of graphene, namely silicene, germanene and stanene, by applying the orbital vibronic coupling density theory. In order to do so, we have made a vis-a-vis analogy with their respective planar, honeycomb molecular cluster models, namely hexasilabenzene \((\hbox {Si}_{6}\hbox {H}_{6}\)), hexagermabenzene \((\hbox {Ge}_{6}\hbox {H}_{6}\)) and hexastannabenzene \((\hbox {Sn}_{6}\hbox {H}_{6})\). One-to-one mapping of the occupied crystal orbitals and unoccupied crystal orbitals in two-dimensional (2D) Si, Ge and Sn systems to the occupied molecular orbitals and unoccupied molecular orbitals of the corresponding molecular units are used to identify PJT-active bands and compute the crystal orbital vibronic coupling density (c-OVCD) and crystal orbital vibronic coupling constants (c-OVCCs). c-OVCD and c-OVCC show the local picture of the PJT coupling in these 2D systems. This article exemplifies the fruitfulness of deciphering the structural aspects in materials based on orbitals of their corresponding simple molecular units—a reductionist quantum chemical approach to materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novoselov K S, Giem A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V et al 2004 Science 306 666

    Article  CAS  Google Scholar 

  2. Lin C, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E et al 2013 Phys. Rev. Lett. 110 076801

    Article  Google Scholar 

  3. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P et al 2012 Nano Lett. 12 3507

    Article  CAS  Google Scholar 

  4. Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z et al 2012 Phys. Rev. Lett. 109 056804

    Article  Google Scholar 

  5. Vogt P, Padova P D, Quaresima C, Avila J, Frantzekakis E, Asensio M C et al 2012 Phys. Rev. Lett. 108 155501

    Article  Google Scholar 

  6. Meng L, Wang Y, Zhang L, Du S, Wu R, Li L et al 2013 Nano Lett. 13 685

    Article  CAS  Google Scholar 

  7. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501

    Article  Google Scholar 

  8. Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E 2013 ACS Nano 7 4414

    Article  CAS  Google Scholar 

  9. Dávilla M E and Lay G L 2016 Sci. Rep. 6 20714

    Article  Google Scholar 

  10. Saxena S, Chaudhary R P and Shukla S 2016 Nat. Sci. Rep. 6 31073

    Article  CAS  Google Scholar 

  11. Nijamudheen A, Bhattacharjee R, Choudhury S and Datta A 2015 J. Phys. Chem. C 119 3802

    Article  CAS  Google Scholar 

  12. Jose D and Datta A 2012 J. Phys. Chem. C 116 24639

    Article  CAS  Google Scholar 

  13. Jose D and Datta A 2014 Acc. Chem. Res. 47 593

    Article  CAS  Google Scholar 

  14. Molina B, Soto J R and Castro J J 2015 Chem. Phys. 460 97

    Article  CAS  Google Scholar 

  15. Soto J R, Molina B and Castro J J 2015 Phys. Chem. Chem. Phys. 17 7624

    Article  CAS  Google Scholar 

  16. Soto J R, Molina B and Castro J J 2017 MRS Adv. 2 1563

    Article  CAS  Google Scholar 

  17. Bersuker I B 2017 J. Phys.: Conf. Ser. 833 012001

    Google Scholar 

  18. Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y et al 2016 Prog. Mater. Sci. 83 24

    Article  CAS  Google Scholar 

  19. Bersuker I B 2013 Chem. Rev. 113 1351

    Article  CAS  Google Scholar 

  20. Liu Y, Wang Y and Bersuker I B 2016 Sci. Rep. 6 23315

    Article  Google Scholar 

  21. Gorinchoy N N and Bersuker I B 2017 J. Phys.: Conf. Ser. 833 012010

    Google Scholar 

  22. Kouchakzadeh G and Nori-Shargh D 2015 Phys. Chem. Chem. Phys. 17 29251

    Article  CAS  Google Scholar 

  23. Pratik S M, Chowdhury C, Bhattacharjee R, Jahiruddin S and Datta A 2015 Chem. Phys. 460 101

    Article  CAS  Google Scholar 

  24. Sato T, Uejima M, Iwahara N, Haruta N, Shizu K and Tanaka K 2013 J. Phys.: Conf. Ser. 428 012010

    Google Scholar 

  25. Tokunaga K, Sato T and Tanaka K 2007 J. Mol. Struct. 838 116

    Article  CAS  Google Scholar 

  26. Uejima M, Sato T, Tanaka K and Kaji H 2013 Phys. Chem. Chem. Phys. 15 14006

    Article  CAS  Google Scholar 

  27. Haruta N, Sato T, Iwahara N and Tanaka K 2013 J. Phys.: Conf. Ser. 428 012003

    Google Scholar 

  28. Sato T, Tokunaga K and Tanaka K 2008 J. Phys. Chem. A 112 758

    Article  CAS  Google Scholar 

  29. Krasnenko V, Boltrushko V and Hizhnyakov V 2017 in: IOP Conference Series. J. Phys.: Conf. Ser. 833 012009

    Google Scholar 

  30. Sato T, Tokunaga K and Tanaka K 2006 J. Chem. Phys. 124 024314

    Article  Google Scholar 

  31. Haruta N, Sato T and Tanaka K 2012 J. Org. Chem. 77 9702

    Article  CAS  Google Scholar 

  32. Shizu K, Sato T and Tanaka K 2010 Nanoscale 2 2186

    Article  CAS  Google Scholar 

  33. Iwahara N, Sato N and Tanaka K 2012 J. Chem. Phys.  136 174315

    Article  Google Scholar 

  34. Shizu K, Sato T, Ito A, Tanaka K and Kaji H 2011 J. Mater. Chem. 21 6375

    Article  CAS  Google Scholar 

  35. Sato T, Shizu K, Tanaka K and Kaji H 2012 J. Photon. Energy 2 021201

    Article  Google Scholar 

  36. Sato T 2017 J. Phys.: Conf. Ser. 833 012020

    Google Scholar 

  37. Sato T, Iwahara N, Haruta N and Tanaka K 2012 Chem. Phys. Lett. 531 257

    Article  CAS  Google Scholar 

  38. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2009 Gaussian 09, revision D.01. Wallington, CT: Gaussian, Inc.

  39. Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Article  CAS  Google Scholar 

  40. Kresse G and Hafner J 1993 J. Phys. Rev. B 48 13115

    Article  CAS  Google Scholar 

  41. Gonze X and Lee C 1997 Phys. Rev. B 55 10355

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the DST-SERB and BRNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Datta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Datta, A. Pseudo-Jahn–Teller effects in two-dimensional silicene, germanene and stanene: a crystal orbital vibronic coupling density analysis. Bull Mater Sci 41, 117 (2018). https://doi.org/10.1007/s12034-018-1634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1634-y

Keywords

Navigation