Skip to main content
Log in

Synthesis of ZSM-5 zeolites using palygorskite as raw material under solvent-free conditions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Zeolites have extensively been applied in gas adsorption and separation, catalysis, and ion exchange thanks to their numerous interesting features. However, the synthesis of zeolites usually requires solvents, which often lead to water pollution, loss of silicon and aluminium components, and low synthesis efficiency. In this account, ZSM-5 zeolites were synthesized from natural clay palygorskite (PAL) by acid leaching, followed by thermal treatment under solvent-free conditions. The as-obtained ZSM-5 zeolites exhibited high crystallinity and mesoporous structure. The NMR spectra of ZSM-5 zeolites confirmed the presence of aluminium element derived from the acid-treated PAL (APAL) existed in zeolite framework. Thus, PAL was simultaneously employed as silica and aluminium sources for zeolite preparation. The Si/Al molar ratio of ZSM-5 zeolites could be adjusted by adding NaAlO2, but against growth of ZSM-5 zeolites, resulting in formation of analcime. On the other hand, long thermal treatment for 72 h caused the dissolution of ZSM-5 zeolite crystals and formation of analcime. Overall, calcination could enhance the activity of APAL and crystallinity of ZSM-5 zeolites, and solvent-free synthesis of zeolites from clay might efficiently reduce the cost of zeolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Yu L, Gong J, Zeng C F and Zhang L X 2013 Sep. Purif. Technol. 118 188

    Article  CAS  Google Scholar 

  2. Miao H X, Xue Z T, Ma J H, Zhang Y C and Li R F 2012 Chinese J. Catal. 33 183

    CAS  Google Scholar 

  3. Jiang J L, Lu X Y, Huang H, Duanmu C S, Zhou S M, Gu X et al 2012 Appl. Surf. Sci. 258 8283

    Article  CAS  Google Scholar 

  4. Ren L M, Wu Q M, Yang C G, Zhu L F, Li C J, Zhang P L et al 2012 J. Am. Chem. Soc. 134 15173

    Article  CAS  Google Scholar 

  5. Jin Y Y, Sun Q, Qi G D, Yang C G, Xu J, Chen F et al 2013 Angew. Chem. Int. Ed. 52 9172

    Article  CAS  Google Scholar 

  6. Luo W, Yang X Y, Wang Z R, Huang W F, Chen J Y, Jiang W et al 2017 Micropor. Mesopor. Mater. 243 112

    Article  CAS  Google Scholar 

  7. Zhu L F, Zhang J, Wang L, Wu Q M, Bian C Q, Pan S X et al 2015 J. Mater. Chem. A 3 14093

    Article  CAS  Google Scholar 

  8. Liu Z Y, Wu D, Ren S, Chen X Q, Qiu M H, Liu G J et al 2016 RSC Adv. 6 15816

    Article  CAS  Google Scholar 

  9. Zhang C S, Wu Q M, Lei C, Pan S X, Bian C Q, Wang L et al 2009 Ind. Eng. Chem. Res. 56 1450

    Article  Google Scholar 

  10. Feng H, Li C Y and Shan H H 2009 Appl. Clay Sci. 42 439

    Article  CAS  Google Scholar 

  11. Jiang J L, Feng L D, Gu X, Qian Y H, Gu Y X and Duanmu C S 2012 Appl. Clay Sci. 55 108

    Article  CAS  Google Scholar 

  12. Jiang J L, Duanmu C S, Yang Y, Gu X and Chen J 2014 Powder Technol. 251 9

    Article  CAS  Google Scholar 

  13. Jiang J L, Gu X, Feng L D, Duanmu C S, Jin Y L, Hu T et al 2012 Powder Technol. 217 298

    Article  CAS  Google Scholar 

  14. Zeng S J, Wang R W, Zhang Z T and Qiu S L 2016 Inorg. Chem. Commun. 70 168

    Article  CAS  Google Scholar 

  15. Liu Y, Yang X H, Yan C J, Wang H Q and Zhou S 2019 Mater. Lett. 248 28

    Article  CAS  Google Scholar 

  16. Liu Y, Yan C J, Zhao J J, Zhang Z H, Wang H Q, Zhou S et al 2018 J. Clean. Prod. 202 11

    Article  CAS  Google Scholar 

  17. Chen S, Guan D D, Zhang Y, Wang Z and Jiang N Z 2019 Micropor. Mesopor. Mater. 285 170

    Article  CAS  Google Scholar 

  18. Atta A Y, Jibril B Y, Aderemi B O and Adefila S S 2012 Appl. Clay Sci. 61 8

    Article  CAS  Google Scholar 

  19. Salou M, Kooli F, Kiyozumi Y and Mikamizu F 2001 J. Mater. Chem. 11 1476

    Article  CAS  Google Scholar 

  20. Panpa W and Jinawath S 2009 Appl. Catal. B: Environ. 90 389

    Article  CAS  Google Scholar 

  21. Janssens C, Grobet P J and Schoonheydt R A 1991 Zeolites 11 184

    Article  CAS  Google Scholar 

  22. Iwakai K, Tago T, Konno H, Nakasaka Y and Masuda T 2011 Micropor. Mesopor. Mater. 141 167

    Article  CAS  Google Scholar 

  23. Liu B Y, Zheng L M, Zhu Z H, Zhang K, Xi H X and Qian Y 2014 RSC Adv. 4 13831

    Article  CAS  Google Scholar 

  24. Huang L, Qin F, Huang Z, Zhang Y X, Ma J, Xu H L et al 2016 Ind. Eng. Chem. Res. 55 7318

    Article  CAS  Google Scholar 

  25. Zhou X X, Chen H R, Zhu Y, Song Y D, Chen Y, Wang Y X et al 2013 Chem. Eur. J. 19 10017

    Article  CAS  Google Scholar 

  26. Erdem A and Sand L B 1979 J. Catal. 60 241

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (nos. 51574130, 51908240 and 21606098), Six Talent Peaks Project in Jiangsu Province (2018-JNHB-009), Natural Science Foundation of Jiangsu Province (BK20181064), Natural Science Key Project of the Jiangsu Higher Education Institutions (18KJA430006 and 19KJA430015) and College Students’ Innovation and Entrepreneurship Training Program of Jiangsu Province (201911049012Y), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Jiang, W., Jiang, J. et al. Synthesis of ZSM-5 zeolites using palygorskite as raw material under solvent-free conditions. Bull Mater Sci 43, 289 (2020). https://doi.org/10.1007/s12034-020-02263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02263-8

Keywords

Navigation