Skip to main content
Log in

Substitution tuned electronic absorption, charge transfer and non-linear optical properties of some D–A type 2,4,6-trisubstituted-1,3,5-triazines: a DFT study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated theoretically a series of donor–acceptor (D–A) type star-shaped triazine derivatives by employing density functional theory using 6-311G(d,p) basis set to understand the effect of variable substitution (on triazine core with substituents having diverse electron releasing or withdrawing capabilities) on their linear and non-linear optical properties (first hyperpolarizabilities). The investigation of influence of various electron donors/acceptors on the charge transfer characteristics of triazine molecules under study was also conducted. Present computational study reveals that the substitution of strong electron donors and greater charge delocalization enhance the first hyperpolarizability of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwarzer A, Saplinova T and Kroke E 2013 Coord. Chem. Rev. 257 2032

    CAS  Google Scholar 

  2. Bredas J L, Adant C, Tackx P, Persoons A and Pierce B M 1994 Chem. Rev. 94 243

    CAS  Google Scholar 

  3. Franken P A, Hill A E, Peters C W and Weinreich G 1961 Phys. Rev. Lett. 7 118

    Google Scholar 

  4. Williams D J 1984 Angew. Chem. Int. Ed. Engl. 23 690

    Google Scholar 

  5. Devi M S, Tharmaraj P, Sheela C D and Ebenezer R 2013 J. Fluoresc. 23 399

    CAS  Google Scholar 

  6. Thalladi V R, Brasselet S, Weiss H C, Blaser D, Katz A K, Carrell H L et al 1998 J. Am. Chem. Soc. 120 2563

    CAS  Google Scholar 

  7. Lu J, Xia P F, Lo P K, Tao Y and Wong M S 2006 Chem. Mater. 18 6194

    CAS  Google Scholar 

  8. Liu X K, Zheng C J, Xiao J, Ye J, Liu C L, Wang S D et al 2012 Phys. Chem. Chem. Phys. 14 14255

    CAS  Google Scholar 

  9. Sahu D, Tsai C H, Wei H Y, Ho K C, Chang F C and Chu C W 2012 J. Mater. Chem. 22 7945

    CAS  Google Scholar 

  10. Kwon J, Kim M K, Hong J P, Lee W, Noh S, Lee C et al 2010 Org. Electron. 11 1288

    CAS  Google Scholar 

  11. Kwon J, Kim M K, Hong J P, Lee W, Lee S and Hong J I 2013 Bull. Korean Chem. Soc. 34 1355

    CAS  Google Scholar 

  12. Thallpally P K, Chakraborty K, Carrel H L, Kotha S and Desiraju G R 2000 Tetrahedron 56 6721

    Google Scholar 

  13. Jetti R K R, Thallapally P K, Xue F, Mak T C W and Nangia A 2000 Tetrahedron 56 6707

    CAS  Google Scholar 

  14. Broder C K, Howard J A K, Keen D A, Wilson C C, Allen F H, Jetti R K R et al 2000 Acta Cryst. B 56 1080

    Google Scholar 

  15. Fabian L, Bombicz P, Czugler M, Kalman A, Weber E and Hecker M 1999 Supramol. Chem.11 151

    CAS  Google Scholar 

  16. Munakata M, Wen M, Suenaga Y, Kuroda-Sowa T, Maekawa M and Anahata M 2001 Polyhedron 20 2037

    CAS  Google Scholar 

  17. Boraei A A A and El-Roudi O M 1996 Can. J. Appl. Spec. 41 37

    Google Scholar 

  18. Garcia A, Insuasty B, Herranz M A, Martinez-Alvarez R and Martin N 2009 Org. Lett. 11 5398

    CAS  Google Scholar 

  19. Shie J J and Fang J M 2007 J. Org. Chem. 72 3141

    CAS  Google Scholar 

  20. Wang M X and Yang H B 2004 J. Am. Chem. Soc. 126 15412

    CAS  Google Scholar 

  21. Saied H N, Khalil H H, Abdel M M, El-Wakil M H, Bekhit A A and Nabil K S 2019 Bioorg. Chem. 89 103013

    Google Scholar 

  22. Wu H, Hu R, Zeng B, Yang L, Chen T, Zheng W et al 2018 RSC Adv. 83 7631

    Google Scholar 

  23. Jin G F, Ban H S, Nakamura H and Lee J D 2018 Molecules23 2194

    Google Scholar 

  24. Chouai A and Simanek E E 2008 J. Org. Chem.73 2357

    CAS  Google Scholar 

  25. Steffensen M B and Simanek E E 2004 Angew. Chem. Int. Ed. 43 5178

    CAS  Google Scholar 

  26. Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H et al 2018 Angew. Chem. Int. Ed. 57 8438

    CAS  Google Scholar 

  27. Guo M, Wu J, Cador O, Lu J, Yin B, Le Guennic B et al 2018 Inorg. Chem. 57 4534

    CAS  Google Scholar 

  28. Zhang W, Yang D, Zhao J, Hou L, Sessler J L, Yang X J et al 2018 J. Am. Chem. Soc. 140 5248

    CAS  Google Scholar 

  29. Das P and Mandal S K 2018 J. Mater. Chem. C 6 3288

    CAS  Google Scholar 

  30. Dehghani Z, Dadfarnia S, Shabani A M H and Ehrampoush M H 2015 Anal. Bioanal. Chem. 2 13

    CAS  Google Scholar 

  31. Idzik K R, Frydel J, Beckert R, Ledwon P, Lapkowski M, Fasting C et al 2012 Electrochim. Acta 79 154

    CAS  Google Scholar 

  32. Ward J F 1965 Rev. Mod. Phys. 37 1

    Google Scholar 

  33. Oudar J L 1977 J. Chem. Phys. 67 446

    CAS  Google Scholar 

  34. Oudar J L and Le Person H 1975 Opt. Commun. 15 258

    CAS  Google Scholar 

  35. Le Cours S M, Guan H W, Di Magno S G, Wang C H and Therien M J 1996 J. Am. Chem. Soc. 118 1497

    Google Scholar 

  36. Oudar J L and Chemla D S 1977 J. Chem. Phys. 66 2664

    CAS  Google Scholar 

  37. Zyss J and Ledoux I 1994 Chem. Rev. 94 77

    CAS  Google Scholar 

  38. Meyers F, Marder S R, Pierce B M and Bredas J L 1994 J. Am. Chem. Soc. 116 10703

    CAS  Google Scholar 

  39. Gyoosoon P and Bong R C 2004 J. Phys. Org. Chem.17 169

    Google Scholar 

  40. Zhu G W and Wu G S 2001 J. Phys. Chem. A 105 9568

    CAS  Google Scholar 

  41. Koeppen M, Beyer O, Wuttke S, Luening U and Stock N 2017 Dalton Trans. 46 8658

    CAS  Google Scholar 

  42. Becke A D 1993 J. Chem. Phys. 98 5648

    CAS  Google Scholar 

  43. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    CAS  Google Scholar 

  44. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2013 Gaussian 09, Revision E.01 Gaussian, Inc.: Wallingford, CT

  45. Bredas J L, Meyers F, Pierce B M and Zyss J 1992 J. Am. Chem. Soc.114 10703

    Google Scholar 

  46. Srinivas K, Prabhakar C, Sitha S, Bhanuprakash K and Jayathirtha R V 2014 J. Mol. Struct. 1075 118

    CAS  Google Scholar 

  47. Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51

    CAS  Google Scholar 

  48. Chai J D and Gordon M H 2008 J. Chem. Phys. 128 084106

    Google Scholar 

  49. Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215

    CAS  Google Scholar 

  50. Vydrov O A and Scuseria G E 2006 J. Chem. Phys. 125 234109

    Google Scholar 

  51. Becke A D 1993 J. Chem. Phys. 98 1372

    CAS  Google Scholar 

  52. Llobera A, Saa J M and Peralta A 1985 Synthesis 95

  53. Stalin T and Rajendiran N 2006 J. Photochem. Photobiol. A 182 137

    CAS  Google Scholar 

  54. Huang W, Zhang X, Ma L H, Wang C J and Jiang Y B 2002 Chem. Phys. Lett. 352 401

    CAS  Google Scholar 

  55. Alexiou M S, Tychopoulos V, Ghorbanian S, Tyman J H P, Brown R G and Brittain P I 1990 J. Chem. Soc. Perkin. Trans. 25 837

    Google Scholar 

  56. Nemykin V N and Basu P 2001, 2003 VMOdes Program, Revision A 7.1, Department of Chemistry, Duquesne University, Pittsburgh, PA

  57. Marder S R, Kippelen B, Jen A K Y and Peyghammbarian N 1997 Nature 388 845

    CAS  Google Scholar 

  58. Zerner M C, Fabian W M F, Dworczak R, Kieslinger D W, Kroner G, Junek H et al 2000 Int. J. Quantum. Chem. 79 253

    CAS  Google Scholar 

  59. Kanis D R, Ratner M A and Marks T J 1994 Chem. Rev. 94 195

    CAS  Google Scholar 

  60. Yoshimura T 1989 Phys. Rev. B 40 6292

    CAS  Google Scholar 

  61. Yoshimura T 1989 Appl. Phys. Lett. 55 534

    CAS  Google Scholar 

  62. Ray P C and Das P K 1995 Chem. Phys. Lett. 244 153

    CAS  Google Scholar 

  63. Teng C C and Garito A F 1983 Phys. Rev. B 28 6766

Download references

Acknowledgements

CP thanks SERB, New Delhi, India, for financial support under Young Scientist Start-Up Research Grant (SB/FT/CS-101/2014). VVM acknowledges the Department of Science and Technology, Government of India, for financial support vide reference SR/WOS-A/CS-46/2017 under women scientist scheme to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetti Prabhakar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1985 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidya, V.M., Prabhakar, C. Substitution tuned electronic absorption, charge transfer and non-linear optical properties of some D–A type 2,4,6-trisubstituted-1,3,5-triazines: a DFT study. Bull Mater Sci 43, 80 (2020). https://doi.org/10.1007/s12034-020-2046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2046-3

Keywords

Navigation