Skip to main content
Log in

Functional Implications of an Early Exposure to General Anesthesia: Are We Changing the Behavior of Our Children?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is a rapidly growing body of animal and clinical evidence suggesting that the exposure to anesthetics and sedatives during the critical stages of brain development results in long-lasting (perhaps permanent) impairment in cognitive development in a variety of mammalian species. With improved understanding of the mechanisms responsible for behavioral outcomes of anesthesia-induced developmental neurotoxicity, there is hope for development of protective strategies that will enable safe use of anesthesia in the youngest members of our society. Here, I review presently available evidence regarding anesthesia-induced neurocognitive and social behavioral impairments and possible strategies for preventing them. I also review limited and somewhat controversial evidence that examines the effects of nociception and surgical stimulation on anesthesia-­induced developmental neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jevtovic-Todorovic V, Hartman RE, Izumi Y et al (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882

    PubMed  CAS  Google Scholar 

  2. Loepke AW, Istaphanous GK, McAuliffe JJ 3rd et al (2009) The effects of neonatal isoflurane exposure in mice on brain cell viability, adult behavior, learning, and memory. Anesth Analg 108:90–104

    Article  PubMed  CAS  Google Scholar 

  3. Young C, Jevtovic-Todorovic V, Qin YQ et al (2005) Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol 146:189–97

    Article  PubMed  CAS  Google Scholar 

  4. Rizzi S, Carter LB, Ori C, Jevtovic-Todorovic V (2008) Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol 18:198–210

    Article  PubMed  Google Scholar 

  5. Slikker W Jr, Zou X, Hotchkiss CE et al (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98:145–58

    Article  PubMed  CAS  Google Scholar 

  6. Fredriksson A, Pontén E, Gordh T, Eriksson P (2007) Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107:427–36

    Article  PubMed  CAS  Google Scholar 

  7. Fredriksson A, Archer T, Alm H et al (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 153:367–76

    Article  PubMed  CAS  Google Scholar 

  8. Pesic V, Milanovic D, Tanic N et al (2009) Potential mechanism of cell death in the developing rat brain induced by propofol anesthesia. Int J Dev Neurosci 27:279–87

    Article  PubMed  CAS  Google Scholar 

  9. Viberg H, Pontén E, Eriksson P et al (2008) Neonatal ketamine exposure results in changes in biochemical substrates of neuronal growth and synaptogenesis, and alters adult behavior irreversibly. Toxicology 49:153–9

    Article  Google Scholar 

  10. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T (2011) Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 115:979–91

    Article  PubMed  Google Scholar 

  11. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J (2009) Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology 110:628–37

    Article  PubMed  CAS  Google Scholar 

  12. Sanchez V, Feinstein SD, Lunardi N, Joksovic PM, Boscolo A, Todorovic SM, Jevtovic-Todorovic V (2011) General anesthesia causes long-term impairment of mitochondrial morphogenesis and synaptic transmission in developing rat brain. Anesthesiology 115:992–1002

    Article  PubMed  Google Scholar 

  13. Boscolo A, Starr JA, Sanchez V, Lunardi N, Digruccio MR, Ori C, Erisir A, Trimmer P, Bennett J, Jevtovic-Todorovic V (2012) The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: the importance of free oxygen radicals and mitochondrial integrity. Neurobiol Dis 45:1031–41

    Article  PubMed  CAS  Google Scholar 

  14. Zhao Y, Liang G, Chen Q, Joseph DJ, Meng Q, Eckenhoff RG, Eckenhoff MF, Wei H (2010) Anesthetic-induced neurodegeneration mediated via inositol 1,4,5-trisphosphate receptors. J Pharmacol Exp Ther 333:14–22

    Article  PubMed  CAS  Google Scholar 

  15. Lemkuil BP, Head BP, Pearn ML et al (2011) Isoflurane neurotoxicity is mediated by p75NTR-RhoA activation and actin depolymerization. Anesthesiology 114:49–57

    Article  PubMed  CAS  Google Scholar 

  16. Liang G, Ward C, Peng J, Zhao Y, Huang B, Wei H (2010) Isoflurane causes greater neurodegeneration than an equivalent exposure of sevoflurane in the developing brain of neonatal mice. Anesthesiology 112:1325–34

    Article  PubMed  CAS  Google Scholar 

  17. Bercker S, Bert B, Bittigau P, Felderhoff-Müser U, Bührer C, Ikonomidou C, Weise M, Kaisers UX, Kerner T (2009) Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotox Res 16:140–7

    Article  PubMed  CAS  Google Scholar 

  18. Shu Y, Zhou Z, Wan Y, Sanders RD, Li M, Pac-Soo CK, Maze M, Ma D (2012) Nociceptive stimuli enhance anesthetic-induced neuroapoptosis in the rat developing brain. Neurobiol Dis 45:743–50

    Article  PubMed  CAS  Google Scholar 

  19. Liu JR, Liu Q, Li J, Baek C, Han XH, Athiraman U, Soriano SG (2012) Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology 117:64–71

    Article  PubMed  CAS  Google Scholar 

  20. Yon J-H, Carter LB, Reiter RJ, Jevtovic-Todorovic V (2006) Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis 21:522–530

    Article  PubMed  CAS  Google Scholar 

  21. Zou X, Sadovova N, Patterson TA, Divine RL, Hotchkiss CE, Ali SF, Hanig JP, Paule MG, Slikker W Jr, Wang C (2008) The effects of L-carnitine on the combination of, inhalation anesthetic-induced developmental, neuronal apoptosis in the rat frontal cortex. Neuroscience 151:1053–1065

    Article  PubMed  CAS  Google Scholar 

  22. Lu LX, Yon J-H, Carter LB, Jevtovic-Todorovic V (2006) General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis 11:1603–15

    Article  PubMed  CAS  Google Scholar 

  23. Sanders RD, Xu J, Shu Y, Januszewski A, Halder S, Fidalgo A, Sun P, Hossain M, Ma D, Maze M (2009) Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology 110:1077–85

    Article  PubMed  CAS  Google Scholar 

  24. Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A 100:8526–31

    Article  PubMed  CAS  Google Scholar 

  25. Baker K, Marcus CB, Huffman K, Kruk H, Malfroy B, Doctrow SR (1998) Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J Pharmacol Exp Ther 284:215–21

    PubMed  CAS  Google Scholar 

  26. Sayeed I, Parvez S, Winkler-Stuck K, Seitz G, Trieu I, Wallesch CW, Schönfeld P, Siemen D (2006) Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole. FASEB J 20:556–8

    PubMed  CAS  Google Scholar 

  27. Cassarino DS, Fall CP, Smith TS, Bennett JP Jr (1998) Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem 71:295–301

    Article  PubMed  CAS  Google Scholar 

  28. Le WD, Jankovic J, Xie W, Appel SH (2000) Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 107:1165–73

    Article  PubMed  CAS  Google Scholar 

  29. Zou L, Xu J, Jankovic J, He Y, Appel SH, Le W (2000) Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett 281:167–70

    Article  PubMed  CAS  Google Scholar 

  30. Shih J, May LD, Gonzalez HE, Lee EW, Alvi RS, Sall JW, Rau V, Bickler PE, Lalchandani GR, Yusupova M, Woodward E, Kang H, Wilk AJ, Carlston CM, Mendoza MV, Guggenheim JN, Schaefer M, Rowe AM, Stratmann G (2012) Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology 116:586–602

    Article  PubMed  CAS  Google Scholar 

  31. Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, Hanig JP, Patterson TA, Slikker W Jr, Wang C (2011) Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol 33:220–30

    Article  PubMed  CAS  Google Scholar 

  32. Paule MG, Chelonis JJ, Buffalo EA et al (1999) Operant test battery performance in children: correlation with IQ. Neurotoxicol Teratol 21:223–30

    Article  PubMed  CAS  Google Scholar 

  33. Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  Google Scholar 

  34. Sun LS, Li G, Dimaggio C et al (2008) Anesthesia and neurodevelopment in children: time for an answer? Anesthesiology 109:757–61

    Article  PubMed  Google Scholar 

  35. Chorne N, Leonard C, Piecuch R, Clyman RI (2007) Patent ductus arteriosus and its treatment as risk factors for neonatal and neurodevelopmental morbidity. Pediatrics 119:1165–1174

    Article  PubMed  Google Scholar 

  36. Hintz SR, Kendrick DE, Stoll BJ et al (2005) Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115:696–703

    Article  PubMed  Google Scholar 

  37. Block RI, Thomas JJ, Bayman EO, Choi JY, Kimble KK, Todd MM (2012) Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology 117:494–503

    Article  PubMed  Google Scholar 

  38. Sprung J, Flick RP, Katusic SK, Colligan RC, Barbaresi WJ, Bojanić K, Welch TL, Olson MD, Hanson AC, Schroeder DR, Wilder RT, Warner DO (2012) Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc 87:120–9

    Article  PubMed  Google Scholar 

  39. Sprung J, Flick RP, Wilder RT, Katusic SK, Pike TL, Dingli M, Gleich SJ, Schroeder DR, Barbaresi WJ, Hanson AC, Warner DO (2009) Anesthesia for Cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology 111:302–10

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NICHD HD 44517, John E. Fogarty Award TW007423-128322, ARRA supplement NIH/NICHD HD 44517, March of Dimes National Award,. and Harold Carron endowment. VJT was an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Jevtovic-Todorovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jevtovic-Todorovic, V. Functional Implications of an Early Exposure to General Anesthesia: Are We Changing the Behavior of Our Children?. Mol Neurobiol 48, 288–293 (2013). https://doi.org/10.1007/s12035-013-8488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8488-5

Keywords

Navigation