Skip to main content

Advertisement

Log in

Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Protein kinases are one of the largest families of evolutionarily related proteins and the third most common protein class of human genome. All the protein kinases share the same structural organization. They are made up of an extracellular domain, transmembrane domain and an intra cellular kinase domain. Missense mutations in these kinases have been studied extensively and correlated with various neurological disorders. Individual mutations in the kinase domain affect the functions of protein. The enhanced or reduced expression of protein leads to hyperactivation or inactivation of the signalling pathways, resulting in neurodegeneration. Here, we present extensive analyses of missense mutations in the tyrosine kinase focussing on the neurodegenerative diseases encompassing structure function relationship. This is envisaged to enhance our understanding about the neurodegeneration and possible therapeutic measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AchR:

Acetylcholine receptors

AIS:

Auto-inhibitory sequence

ALCL:

Anaplastic large-cell lymphoma

ALK:

Anaplastic lymphoma receptor tyrosine kinase

BAD:

Bcl-2 associated death promoter

CDKL5:

Cyclin-dependent kinase-like 5

CIPA:

Congenital insensitivity to pain with anhidrosis

DFG:

Asp-Phe-Gly motif

EGFR:

Epidermal growth factor receptor family

ErbB3:

Erythroblastic leukaemia viral oncogene homologue 3

HER3:

Heregulin 3

HRD:

His-Arg-Asp motif

HSS:

Hallervorden-Spatz syndrome

KA-1:

Kinase-associated domain

LCCS2:

Lethal congenital contractual syndrome type 2

LDLa:

Low-density lipoprotein receptor class A

LRP4:

Low-density lipoprotein receptor-related protein 4

LTK:

Leukocyte tyrosine kinase

MAM:

Met-Ala-Met segment

MuSK:

Muscle-specific receptor tyrosine kinase

NBIA:

Neurodegeneration with brain iron accumulation

NBL:

Neuroblastoma

NPM:

Nucleophosmin

NTRK1:

Neurotrophic tyrosine kinase receptor 1

PANK2:

Pantothenate kinase 2

PINK1:

PTEN-induced putative kinase 1

PKAN:

PANK-associated neurodegeneration

PRKCG:

Protein kinase C-γ

RTKs:

Receptor tyrosine kinases

TKs:

Non-receptor tyrosine kinases

TRPM7:

Transient receptor potential melastatin 7

References

  1. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, et al. (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329(5996):1201–1205. doi:10.1126/science.1191241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen LJ, Gans SW, McGeoch PG, Poznansky O, Itskovich Y, Murphy S, Klein E, Cullen K, et al. (2002) Impulsive personality traits in male pedophiles versus healthy controls: is pedophilia an impulsive-aggressive disorder? Compr Psychiatry 43(2):127–134

    Article  PubMed  Google Scholar 

  3. Endicott JA, Noble ME, Johnson LN (2012) The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 81:587–613. doi:10.1146/annurev-biochem-052410-090317

    Article  CAS  PubMed  Google Scholar 

  4. Naz H, Islam A, Ahmad F, Hassan MI (2016) Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target. Prog Biophys Mol Biol 121(1):54–65. doi:10.1016/j.pbiomolbio.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  5. Naz F, Anjum F, Islam A, Ahmad F, Hassan MI (2013) Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem Biophys 67(2):485–499. doi:10.1007/s12013-013-9550-7

    Article  CAS  PubMed  Google Scholar 

  6. Naz F, Islam A, Ahmad F, Hassan MI (2015) Atypical PKC phosphorylates microtubule affinity-regulating kinase 4 in vitro. Mol Cell Biochem 410(1-2):223–228. doi:10.1007/s11010-015-2555-3

    Article  CAS  PubMed  Google Scholar 

  7. Hatzios SK, Baer CE, Rustad TR, Siegrist MS, Pang JM, Ortega C, Alber T, Grundner C, et al. (2013) Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase. Proc Natl Acad Sci 110(52):E5069–E5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hughes KT, Mathee K (1998) The anti-sigma factors. Annu Rev Microbiol 52:231–286. doi:10.1146/annurev.micro.52.1.231

    Article  CAS  PubMed  Google Scholar 

  9. Lahiry P, Torkamani A, Schork NJ, Hegele RA (2010) Kinase mutations in human disease: interpreting genotype-phenotype relationships. Nat Rev Genet 11(1):60–74. doi:10.1038/nrg2707

    Article  CAS  PubMed  Google Scholar 

  10. Martin DM, Miranda-Saavedra D, Barton GJ (2009) Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 37(Database issue):D244–D250. doi:10.1093/nar/gkn834

    Article  CAS  PubMed  Google Scholar 

  11. Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27(10):514–520

    Article  CAS  PubMed  Google Scholar 

  12. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25. doi:10.1016/j.cmet.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  13. Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9(8):576–596

    CAS  PubMed  Google Scholar 

  14. Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-Gonzalez E (2014) Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci 5:190. doi:10.3389/fpls.2014.00190

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haque MA, Ubaid-Ullah S, Zaidi S, Hassan MI, Islam A, Batra JK, Ahmad F (2015) Characterization of pre-molten globule state of yeast iso-1-cytochrome c and its deletants at pH 6.0 and 25 degrees C. Int J Biol Macromol 72:1406–1418. doi:10.1016/j.ijbiomac.2014.10.053

    Article  CAS  PubMed  Google Scholar 

  16. Zaidi S, Hassan MI, Islam A, Ahmad F (2014) The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 71(2):229–255. doi:10.1007/s00018-013-1341-1

    Article  CAS  PubMed  Google Scholar 

  17. Zaidi S, Haque MA, Ubaid-Ullah S, Prakash A, Hassan MI, Islam A, Batra JK, Ahmad F (2016) Denatured states of yeast cytochrome c induced by heat and guanidinium chloride are structurally and thermodynamically different. J Biomol Struct Dyn:1-16. doi:10.1080/07391102.2016.1185039

  18. Khan SH, Kumar A, Prakash A, Taneja B, Islam A, Hassan MI, Ahmad F (2016) Structural and thermodynamic characterisation of L94F mutant of horse cytochrome c. Int J Biol Macromol 92:202–212. doi:10.1016/j.ijbiomac.2016.06.096

    Article  CAS  PubMed  Google Scholar 

  19. Khan FI, Shahbaaz M, Bisetty K, Waheed A, Sly WS, Ahmad F, Hassan MI (2016) Large scale analysis of the mutational landscape in beta-glucuronidase: A major player of mucopolysaccharidosis type VII. Gene 576(1 Pt 1):36–44. doi:10.1016/j.gene.2015.09.062

    Article  CAS  PubMed  Google Scholar 

  20. Alam Khan MK, Rahaman MH, Hassan MI, Singh TP, Moosavi-Movahedi AA, Ahmad F (2010) Conformational and thermodynamic characterization of the premolten globule state occurring during unfolding of the molten globule state of cytochrome c. J Biol Inorg Chem 15(8):1319–1329. doi:10.1007/s00775-010-0691-5

    Article  CAS  PubMed  Google Scholar 

  21. Stenberg KA, Riikonen PT, Vihinen M (2000) KinMutBase, a database of human disease-causing protein kinase mutations. Nucleic Acids Res 28(1):369–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crozet P, Margalha L, Confraria A, Rodrigues A, Martinho C, Adamo M, Elias CA, Baena-González E (2014) Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases. Front Plant Sci 5:190

    Article  PubMed  PubMed Central  Google Scholar 

  23. Das DK, Mehta B, Menon SR, Raha S, Udani V (2013) Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome. NeuroMolecular Med 15(1):218–225. doi:10.1007/s12017-012-8212-z

    Article  CAS  PubMed  Google Scholar 

  24. Song S, Jang S, Park J, Bang S, Choi S, Kwon KY, Zhuang X, Kim E, et al. (2013) Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and Drosophila. J Biol Chem 288(8):5660–5672. doi:10.1074/jbc.M112.430801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, Welter ML, Ollagnon-Roman E, et al. (2004) Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 61(8):1242–1248. doi:10.1001/archneur.61.8.1242

    Article  PubMed  Google Scholar 

  26. Vennekens R, Menigoz A, Nilius B (2012) TRPs in the Brain. Rev Physiol Biochem Pharmacol 163:27–64. doi:10.1007/112_2012_8

    PubMed  Google Scholar 

  27. Park HS, Hong C, Kim BJ, So I (2014) The Pathophysiologic Roles of TRPM7 Channel. Korean J Physiol Pharmacol 18(1):15–23. doi:10.4196/kjpp.2014.18.1.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci U S A 102(32):11510–11515. doi:10.1073/pnas.0505149102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Plato CC, Galasko D, Garruto RM, Plato M, Gamst A, Craig UK, Torres JM, Wiederholt W (2002) ALS and PDC of Guam: forty-year follow-up. Neurology 58(5):765–773

    Article  CAS  PubMed  Google Scholar 

  30. Hara K, Kokubo Y, Ishiura H, Fukuda Y, Miyashita A, Kuwano R, Sasaki R, Goto J, et al. (2010) TRPM7 is not associated with amyotrophic lateral sclerosis-parkinsonism dementia complex in the Kii peninsula of Japan. Am J Med Genet B Neuropsychiatr Genet 153B(1):310–313. doi:10.1002/ajmg.b.30966

    CAS  PubMed  Google Scholar 

  31. Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI (2016) Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur J Med Chem. doi:10.1016/j.ejmech.2016.07.054

    Google Scholar 

  32. Kumar V, Islam A, Hassan MI, Ahmad F (2016) Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem. 121:903–917. doi:10.1016/j.ejmech.2016.06.017

  33. Kumar V, Islam A, Hassan MI, Ahmad F (2016) Delineating the relationship between amyotrophic lateral sclerosis and frontotemporal dementia: Sequence and structure-based predictions. Biochim Biophys Acta 1862(9):1742–1754. doi:10.1016/j.bbadis.2016.06.011

    Article  CAS  PubMed  Google Scholar 

  34. Erpapazoglou Z, Corti O (2015) The endoplasmic reticulum/mitochondria interface: a subcellular platform for the orchestration of the functions of the PINK1-Parkin pathway? Biochem Soc Trans 43(2):297–301. doi:10.1042/BST20150008

    Article  CAS  PubMed  Google Scholar 

  35. Lopes JP, Agostinho P (2011) Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol 94(1):49–63. doi:10.1016/j.pneurobio.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang L, Soda M, et al. (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455(7215):971–974. doi:10.1038/nature07399

    Article  CAS  PubMed  Google Scholar 

  37. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, et al. (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935. doi:10.1038/nature07261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roskoski R Jr (2013) Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 68(1):68–94. doi:10.1016/j.phrs.2012.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Ou SH, Milliken JC, Azada MC, Miller VA, Ali SM, Klempner SJ (2016) ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression. Lung Cancer 91:70–72. doi:10.1016/j.lungcan.2015.09.006

    Article  PubMed  Google Scholar 

  40. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC et al. (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 4 (120):120ra117. doi:10.1126/scitranslmed.3003316

  41. Levi S, Finazzi D (2014) Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms. Front Pharmacol 5:99. doi:10.3389/fphar.2014.00099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, Saltman DL (1995) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 267(5196):316–317

    Article  CAS  PubMed  Google Scholar 

  43. Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S (1994) Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene 9(6):1567–1574

    CAS  PubMed  Google Scholar 

  44. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8(1):11–23. doi:10.1038/nrc2291

    Article  CAS  PubMed  Google Scholar 

  45. Coluccia AM, Gunby RH, Tartari CJ, Scapozza L, Gambacorti-Passerini C, Passoni L (2005) Anaplastic lymphoma kinase and its signalling molecules as novel targets in lymphoma therapy. Expert Opin Ther Targets 9(3):515–532. doi:10.1517/14728222.9.3.515

    Article  CAS  PubMed  Google Scholar 

  46. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. doi:10.1016/j.cell.2010.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lemke G (2015) Adopting ALK and LTK. Proc Natl Acad Sci U S A 112(52):15783–15784. doi:10.1073/pnas.1521923113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X, Witte DP (1997) ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 14(18):2175–2188. doi:10.1038/sj.onc.1201062

    Article  CAS  PubMed  Google Scholar 

  49. Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, Mori S, Ratzkin B, et al. (1997) Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14(4):439–449. doi:10.1038/sj.onc.1200849

    Article  CAS  PubMed  Google Scholar 

  50. Vernersson E, Khoo NK, Henriksson ML, Roos G, Palmer RH, Hallberg B (2006) Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr Patterns 6(5):448–461. doi:10.1016/j.modgep.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  51. Gouzi JY, Moog-Lutz C, Vigny M, Brunet-de Carvalho N (2005) Role of the subcellular localization of ALK tyrosine kinase domain in neuronal differentiation of PC12 cells. J Cell Sci 118(Pt 24):5811–5823. doi:10.1242/jcs.02695

    Article  CAS  PubMed  Google Scholar 

  52. Mi R, Chen W, Hoke A (2007) Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci U S A 104(11):4664–4669. doi:10.1073/pnas.0603243104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T (2004) ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci 117(Pt 15):3319–3329. doi:10.1242/jcs.01183

    Article  CAS  PubMed  Google Scholar 

  54. Lee CC, Jia Y, Li N, Sun X, Ng K, Ambing E, Gao MY, Hua S, et al. (2010) Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem J 430(3):425–437. doi:10.1042/BJ20100609

    Article  CAS  PubMed  Google Scholar 

  55. Bresler SC, Weiser DA, Huwe PJ, Park JH, Krytska K, Ryles H, Laudenslager M, Rappaport EF, et al. (2014) ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 26(5):682–694. doi:10.1016/j.ccell.2014.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanwal H, Khan MH, Rashid H (2013) Effect of missense mutations on structure and interaction of anaplastic Lymphoma kinase (ALK) in neuroblastom. Pak J Pharm Sci 26(3):611–616

    CAS  PubMed  Google Scholar 

  57. Ou SH, Greenbowe J, Khan ZU, Azada MC, Ross JS, Stevens PJ, Ali SM, Miller VA, et al. (2015) I1171 missense mutation (particularly I1171N) is a common resistance mutation in ALK-positive NSCLC patients who have progressive disease while on alectinib and is sensitive to ceritinib. Lung Cancer 88(2):231–234. doi:10.1016/j.lungcan.2015.02.005

    Article  PubMed  Google Scholar 

  58. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, Gray NS, Wilner K, et al. (2010) The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res 70(24):10038–10043. doi:10.1158/0008-5472.CAN-10-2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Caren H, Abel F, Kogner P, Martinsson T (2008) High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J 416(2):153–159

    Article  CAS  PubMed  Google Scholar 

  60. George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, Zhang J, Ahn Y, Zhou W, et al. (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455(7215):975–978. doi:10.1038/nature07397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13(6):397–411. doi:10.1038/nrc3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, Yamamoto T (1996) Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci U S A 93(9):4181–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuefer MU, Look AT, Pulford K, Behm FG, Pattengale PK, Mason DY, Morris SW (1997) Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 90(8):2901–2910

    CAS  PubMed  Google Scholar 

  64. Bischof D, Pulford K, Mason DY, Morris SW (1997) Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol 17(4):2312–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marzec M, Kasprzycka M, Liu X, Raghunath PN, Wlodarski P, Wasik MA (2007) Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 26(6):813–821. doi:10.1038/sj.onc.1209843

    Article  CAS  PubMed  Google Scholar 

  66. Wasik MA (2002) Expression of anaplastic lymphoma kinase in non-Hodgkin’s lymphomas and other malignant neoplasms. Biological, diagnostic, and clinical implications. Am J Clin Pathol 118:81–92

    Google Scholar 

  67. Kasprzycka M, Marzec M, Liu X, Zhang Q, Wasik MA (2006) Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci U S A 103(26):9964–9969. doi:10.1073/pnas.0603507103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R, Karras JG, Levy DE, Inghirami G (2005) Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11(6):623–629. doi:10.1038/nm1249

    Article  CAS  PubMed  Google Scholar 

  69. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J (2000) Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96(13):4319–4327

    CAS  PubMed  Google Scholar 

  70. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, et al. (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67(9):4408–4417. doi:10.1158/0008-5472.CAN-06-4443

    Article  CAS  PubMed  Google Scholar 

  71. Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D, Seiser E, Jagannathan J, et al. (2006) Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 66(12):6050–6062. doi:10.1158/0008-5472.CAN-05-4618

    Article  CAS  PubMed  Google Scholar 

  72. Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60(13):3504–3513

    CAS  PubMed  Google Scholar 

  73. Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr, Abraham RT (1996) Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15(19):5256–5267

  74. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  75. Cohen S (1983) The epidermal growth factor (EGF). Cancer 51(10):1787–1791

    Article  CAS  PubMed  Google Scholar 

  76. Carpenter G, Cohen S (1990) Epidermal growth factor. J Biol Chem 265(14):7709–7712

    CAS  PubMed  Google Scholar 

  77. Cohen S, Ushiro H, Stoscheck C, Chinkers M (1982) A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 257(3):1523–1531

    CAS  PubMed  Google Scholar 

  78. Roskoski R Jr (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74. doi:10.1016/j.phrs.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  79. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167. doi:10.1093/emboj/19.13.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354. doi:10.1038/nrc1609

    Article  CAS  PubMed  Google Scholar 

  81. Mendelsohn J, Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21(14):2787–2799. doi:10.1200/JCO.2003.01.504

    Article  CAS  PubMed  Google Scholar 

  82. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137. doi:10.1038/35052073

    Article  CAS  PubMed  Google Scholar 

  83. Berger MB, Mendrola JM, Lemmon MA (2004) ErbB3/HER3 does not homodimerize upon neuregulin binding at the cell surface. FEBS Lett 569(1-3):332–336. doi:10.1016/j.febslet.2004.06.014

    Article  CAS  PubMed  Google Scholar 

  84. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A 107(17):7692–7697. doi:10.1073/pnas.1002753107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kobayashi M, Iwamatsu A, Shinohara-Kanda A, Ihara S, Fukui Y (2003) Activation of ErbB3-PI3-kinase pathway is correlated with malignant phenotypes of adenocarcinomas. Oncogene 22(9):1294–1301. doi:10.1038/sj.onc.1206256

    Article  CAS  PubMed  Google Scholar 

  86. Guy PM, Platko JV, Cantley LC, Cerione RA, Carraway KL 3rd (1994) Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A 91(17):8132–8136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Narkis G, Ofir R, Manor E, Landau D, Elbedour K, Birk OS (2007) Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Am J Hum Genet 81(3):589–595. doi:10.1086/520770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Earp HS, Dawson TL, Li X, Yu H (1995) Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research. Breast Cancer Res Treat 35(1):115–132

    Article  CAS  PubMed  Google Scholar 

  89. Graus-Porta D, Beerli RR, Hynes NE (1995) Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol 15(3):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Karunagaran D, Tzahar E, Liu N, Wen D, Yarden Y (1995) Neu differentiation factor inhibits EGF binding. A model for trans-regulation within the ErbB family of receptor tyrosine kinases. J Biol Chem 270(17):9982–9990

    Article  CAS  PubMed  Google Scholar 

  91. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA (1989) Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A 86(23):9193–9197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baselga J, Swain SM (2009) Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer 9(7):463–475. doi:10.1038/nrc2656

    Article  CAS  PubMed  Google Scholar 

  93. Soltoff SP, Carraway KL 3rd, Prigent SA, Gullick WG, Cantley LC (1994) ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol 14(6):3550–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Contessa JN, Abell A, Mikkelsen RB, Valerie K, Schmidt-Ullrich RK (2006) Compensatory ErbB3/c-Src signaling enhances carcinoma cell survival to ionizing radiation. Breast Cancer Res Treat 95(1):17–27. doi:10.1007/s10549-005-9023-9

    Article  CAS  PubMed  Google Scholar 

  95. Prigent SA, Gullick WJ (1994) Identification of c-erbB-3 binding sites for phosphatidylinositol 3’-kinase and SHC using an EGF receptor/c-erbB-3 chimera. EMBO J 13(12):2831–2841

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vijapurkar U, Cheng K, Koland JG (1998) Mutation of a Shc binding site tyrosine residue in ErbB3/HER3 blocks heregulin-dependent activation of mitogen-activated protein kinase. J Biol Chem 273(33):20996–21002

    Article  CAS  PubMed  Google Scholar 

  97. Lax I, Johnson A, Howk R, Sap J, Bellot F, Winkler M, Ullrich A, Vennstrom B, et al. (1988) Chicken epidermal growth factor (EGF) receptor: cDNA cloning, expression in mouse cells, and differential binding of EGF and transforming growth factor alpha. Mol Cell Biol 8(5):1970–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim HH, Vijapurkar U, Hellyer NJ, Bravo D, Koland JG (1998) Signal transduction by epidermal growth factor and heregulin via the kinase-deficient ErbB3 protein. Biochem J 334(Pt 1):189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hellyer NJ, Cheng K, Koland JG (1998) ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J 333(Pt 3):757–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J (2009) Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci U S A 106(51):21608–21613. doi:10.1073/pnas.0912101106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Narkis G, Landau D, Manor E, Elbedour K, Tzemach A, Fishelson M, Geiger D, Ofir R, et al. (2004) Homozygosity mapping of lethal congenital contractural syndrome type 2 (LCCS2) to a 6 cM interval on chromosome 12q13. Am J Med Genet A 130A(3):272–276. doi:10.1002/ajmg.a.30266

    Article  PubMed  Google Scholar 

  102. Li BS, Ma W, Jaffe H, Zheng Y, Takahashi S, Zhang L, Kulkarni AB, Pant HC (2003) Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem 278(37):35702–35709. doi:10.1074/jbc.M302004200

    Article  CAS  PubMed  Google Scholar 

  103. Rodriguez-Escudero I, Roelants FM, Thorner J, Nombela C, Molina M, Cid VJ (2005) Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast. Biochem J 390(Pt 2):613–623. doi:10.1042/BJ20050574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Herva R, Leisti J, Kirkinen P, Seppanen U (1985) A lethal autosomal recessive syndrome of multiple congenital contractures. Am J Med Genet 20(3):431–439. doi:10.1002/ajmg.1320200303

    Article  CAS  PubMed  Google Scholar 

  105. Makela-Bengs P, Jarvinen N, Vuopala K, Suomalainen A, Ignatius J, Sipila M, Herva R, Palotie A, et al. (1998) Assignment of the disease locus for lethal congenital contracture syndrome to a restricted region of chromosome 9q34, by genome scan using five affected individuals. Am J Hum Genet 63(2):506–516. doi:10.1086/301968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Herva R, Conradi NG, Kalimo H, Leisti J, Sourander P (1988) A syndrome of multiple congenital contractures: neuropathological analysis on five fetal cases. Am J Med Genet 29(1):67–76. doi:10.1002/ajmg.1320290109

    Article  CAS  PubMed  Google Scholar 

  107. Vuopala K, Herva R (1994) Lethal congenital contracture syndrome: further delineation and genetic aspects. J Med Genet 31(7):521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hubbard SR, Gnanasambandan K (2013) Structure and activation of MuSK, a receptor tyrosine kinase central to neuromuscular junction formation. Biochim Biophys Acta 1834(10):2166–2169. doi:10.1016/j.bbapap.2013.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jennings CG, Dyer SM, Burden SJ (1993) Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc Natl Acad Sci U S A 90(7):2895–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, Nunez L, Park JS, et al. (1995) Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15(3):573–584

    Article  CAS  PubMed  Google Scholar 

  111. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, et al. (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85(4):501–512

    Article  CAS  PubMed  Google Scholar 

  112. Garcia-Osta A, Tsokas P, Pollonini G, Landau EM, Blitzer R, Alberini CM (2006) MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation. J Neurosci 26(30):7919–7932. doi:10.1523/JNEUROSCI.1674-06.2006

    Article  CAS  PubMed  Google Scholar 

  113. Kumar P, Ferns MJ, Meizel S (2006) Identification of agrinSN isoform and muscle-specific receptor tyrosine kinase (MuSK) [corrected] in sperm. Biochem Biophys Res Commun 342(2):522–528. doi:10.1016/j.bbrc.2006.01.161

    Article  CAS  PubMed  Google Scholar 

  114. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, Merlie JP (1995) Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature 377(6546):232–236. doi:10.1038/377232a0

    Article  CAS  PubMed  Google Scholar 

  115. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85(4):525–535

    Article  CAS  PubMed  Google Scholar 

  116. Stiegler AL, Burden SJ, Hubbard SR (2009) Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK. J Mol Biol 393(1):1–9. doi:10.1016/j.jmb.2009.07.091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Masiakowski P, Yancopoulos GD (1998) The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol 8(12):R407

    Article  CAS  PubMed  Google Scholar 

  118. Xu YK, Nusse R (1998) The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol 8(12):R405–R406

    Article  CAS  PubMed  Google Scholar 

  119. Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398. doi:10.1146/annurev.biochem.69.1.373

    Article  CAS  PubMed  Google Scholar 

  120. Till JH, Becerra M, Watty A, Lu Y, Ma Y, Neubert TA, Burden SJ, Hubbard SR (2002) Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure 10(9):1187–1196

    Article  CAS  PubMed  Google Scholar 

  121. Herbst R, Burden SJ (2000) The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J 19(1):67–77. doi:10.1093/emboj/19.1.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wiesner A, Fuhrer C (2006) Regulation of nicotinic acetylcholine receptors by tyrosine kinases in the peripheral and central nervous system: same players, different roles. Cell Mol Life Sci 63(23):2818–2828. doi:10.1007/s00018-006-6081-z

    Article  CAS  PubMed  Google Scholar 

  123. Adams ME, Kramarcy N, Fukuda T, Engel AG, Sealock R, Froehner SC (2004) Structural abnormalities at neuromuscular synapses lacking multiple syntrophin isoforms. J Neurosci 24(46):10302–10309. doi:10.1523/JNEUROSCI.3408-04.2004

    Article  CAS  PubMed  Google Scholar 

  124. Zhou H, Glass DJ, Yancopoulos GD, Sanes JR (1999) Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J Cell Biol 146(5):1133–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pawson T, Nash P (2000) Protein-protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047

    CAS  PubMed  Google Scholar 

  126. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, Kubo S, Shiraishi H, et al. (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312(5781):1802–1805. doi:10.1126/science.1127142

    Article  CAS  PubMed  Google Scholar 

  127. Strochlic L, Cartaud A, Cartaud J (2005) The synaptic muscle-specific kinase (MuSK) complex: new partners, new functions. Bioessays 27(11):1129–1135. doi:10.1002/bies.20305

    Article  CAS  PubMed  Google Scholar 

  128. Inoue A, Setoguchi K, Matsubara Y, Okada K, Sato N, Iwakura Y, Higuchi O, Yamanashi Y (2009) Dok-7 activates the muscle receptor kinase MuSK and shapes synapse formation. Sci Signal 2(59):ra7. doi:10.1126/scisignal.2000113

    Article  PubMed  Google Scholar 

  129. Gallenmuller C, Muller-Felber W, Dusl M, Stucka R, Guergueltcheva V, Blaschek A, von der Hagen M, Huebner A, et al. (2014) Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK. Neuromuscul Disord 24(1):31–35. doi:10.1016/j.nmd.2013.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mihaylova V, Salih MA, Mukhtar MM, Abuzeid HA, El-Sadig SM, von der Hagen M, Huebner A, Nurnberg G, et al. (2009) Refinement of the clinical phenotype in musk-related congenital myasthenic syndromes. Neurology 73(22):1926–1928. doi:10.1212/WNL.0b013e3181c3fce9

    Article  CAS  PubMed  Google Scholar 

  131. Milhem RM, Ben-Salem S, Al-Gazali L, Ali BR (2014) Identification of the Cellular Mechanisms That Modulate Trafficking of Frizzled Family Receptor 4 (FZD4) Missense Mutants Associated With Familial Exudative Vitreoretinopathy FZD4 Missense Mutants Associated With FEVR. Invest Ophthalmol Vis Sci 55(6):3423–3431

    Article  CAS  PubMed  Google Scholar 

  132. Ali BR, Ben-Rebeh I, John A, Akawi NA, Milhem RM, Al-Shehhi NA, Al-Ameri MM, Al-Shamisi SA, Al-Gazali L (2011) Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia. PLoS One 6(10):e26206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, Prioleau C, Herbst R, et al. (2004) MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet 13(24):3229–3240. doi:10.1093/hmg/ddh333

    Article  CAS  PubMed  Google Scholar 

  134. Ammar AB, Soltanzadeh P, Bauché S, Richard P, Goillot E, Herbst R, Gaudon K, Huzé C, et al. (2013) A mutation causes MuSK reduced sensitivity to agrin and congenital myasthenia. PLoS One 8(1):e53826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Maselli RA, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, Gerke BJ, Soliven B, et al. (2010) Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet 19(12):2370–2379. doi:10.1093/hmg/ddq110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, Newsom-Davis J, Burke G, et al. (2006) Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science 313(5795):1975–1978. doi:10.1126/science.1130837

    Article  CAS  PubMed  Google Scholar 

  137. Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, Ben Ammar A, Chaboud A, et al. (2009) Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 85(2):155–167. doi:10.1016/j.ajhg.2009.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bundey S (1972) A genetic study of infantile and juvenile myasthenia gravis. J Neurol Neurosurg Psychiatry 35(1):41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fenichel GM (1978) Clinical syndromes of myasthenia in infancy and childhood. A Rev Arch Neurol 35(2):97–103

    Article  CAS  Google Scholar 

  140. McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418

    Article  CAS  PubMed  Google Scholar 

  141. Reist NE, Werle MJ, McMahan UJ (1992) Agrin released by motor neurons induces the aggregation of acetylcholine receptors at neuromuscular junctions. Neuron 8(5):865–868

    Article  CAS  PubMed  Google Scholar 

  142. Cohen I, Rimer M, Lomo T, McMahan UJ (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol Cell Neurosci 9(4):237–253. doi:10.1006/mcne.1997.0623

    Article  CAS  PubMed  Google Scholar 

  143. Meier T, Hauser DM, Chiquet M, Landmann L, Ruegg MA, Brenner HR (1997) Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J Neurosci 17(17):6534–6544

    CAS  PubMed  Google Scholar 

  144. Meier T, Perez GM, Wallace BG (1995) Immobilization of nicotinic acetylcholine receptors in mouse C2 myotubes by agrin-induced protein tyrosine phosphorylation. J Cell Biol 131(2):441–451

    Article  CAS  PubMed  Google Scholar 

  145. Ferns M, Deiner M, Hall Z (1996) Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation. J Cell Biol 132(5):937–944

    Article  CAS  PubMed  Google Scholar 

  146. Wallace BG, Qu Z, Huganir RL (1991) Agrin induces phosphorylation of the nicotinic acetylcholine receptor. Neuron 6(6):869–878

    Article  CAS  PubMed  Google Scholar 

  147. Swope SL, Huganir RL (1993) Molecular cloning of two abundant protein tyrosine kinases in Torpedo electric organ that associate with the acetylcholine receptor. J Biol Chem 268(33):25152–25161

    CAS  PubMed  Google Scholar 

  148. Swope SL, Huganir RL (1994) Binding of the nicotinic acetylcholine receptor to SH2 domains of Fyn and Fyk protein tyrosine kinases. J Biol Chem 269(47):29817–29824

    CAS  PubMed  Google Scholar 

  149. Fuhrer C, Hall ZW (1996) Functional interaction of Src family kinases with the acetylcholine receptor in C2 myotubes. J Biol Chem 271(50):32474–32481

    Article  CAS  PubMed  Google Scholar 

  150. Mohamed AS, Rivas-Plata KA, Kraas JR, Saleh SM, Swope SL (2001) Src-class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering. J Neurosci 21(11):3806–3818

    CAS  PubMed  Google Scholar 

  151. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135(2):334–342. doi:10.1016/j.cell.2008.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim N, Burden SJ (2008) MuSK controls where motor axons grow and form synapses. Nat Neurosci 11(1):19–27. doi:10.1038/nn2026

    Article  CAS  PubMed  Google Scholar 

  153. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L (2008) LRP4 serves as a coreceptor of agrin. Neuron 60(2):285–297. doi:10.1016/j.neuron.2008.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bergamin E, Hallock PT, Burden SJ, Hubbard SR (2010) The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol Cell 39(1):100–109. doi:10.1016/j.molcel.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Burden SJ, DePalma RL, Gottesman GS (1983) Crosslinking of proteins in acetylcholine receptor-rich membranes: association between the beta-subunit and the 43 kd subsynaptic protein. Cell 35(3 Pt 2):687–692

    Article  CAS  PubMed  Google Scholar 

  156. LaRochelle WJ, Froehner SC (1986) Determination of the tissue distributions and relative concentrations of the postsynaptic 43-kDa protein and the acetylcholine receptor in Torpedo. J Biol Chem 261(12):5270–5274

    CAS  PubMed  Google Scholar 

  157. Martin-Zanca D, Hughes SH, Barbacid M (1986) A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319(6056):743–748. doi:10.1038/319743a0

    Article  CAS  PubMed  Google Scholar 

  158. Greco A, Villa R, Pierotti MA (1996) Genomic organization of the human NTRK1 gene. Oncogene 13(11):2463–2466

    CAS  PubMed  Google Scholar 

  159. Indo Y, Mardy S, Tsuruta M, Karim MA, Matsuda I (1997) Structure and organization of the human TRKA gene encoding a high affinity receptor for nerve growth factor. Jpn J Hum Genet 42(2):343–351. doi:10.1007/BF02766957

    Article  CAS  PubMed  Google Scholar 

  160. Cordon-Cardo C, Tapley P, Jing SQ, Nanduri V, O’Rourke E, Lamballe F, Kovary K, Klein R, et al. (1991) The trk tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell 66(1):173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF (1991) The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252(5005):554–558

    Article  CAS  PubMed  Google Scholar 

  162. Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, Cordon-Cardo C, Jones KR, et al. (1991) The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66(2):395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Holden PH, Asopa V, Robertson AG, Clarke AR, Tyler S, Bennett GS, Brain SD, Wilcock GK, et al. (1997) Immunoglobulin-like domains define the nerve growth factor binding site of the TrkA receptor. Nat Biotechnol 15(7):668–672. doi:10.1038/nbt0797-668

    Article  CAS  PubMed  Google Scholar 

  164. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61(2):203–212

    Article  CAS  PubMed  Google Scholar 

  165. Klein R, Jing SQ, Nanduri V, O’Rourke E, Barbacid M (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65(1):189–197

    Article  CAS  PubMed  Google Scholar 

  166. Windisch JM, Marksteiner R, Schneider R (1995) Nerve growth factor binding site on TrkA mapped to a single 24-amino acid leucine-rich motif. J Biol Chem 270(47):28133–28138

    Article  CAS  PubMed  Google Scholar 

  167. Peng X, Greene LA, Kaplan DR, Stephens RM (1995) Deletion of a conserved juxtamembrane sequence in Trk abolishes NGF-promoted neuritogenesis. Neuron 15(2):395–406

    Article  CAS  PubMed  Google Scholar 

  168. Monshipouri M, Jiang H, Lazarovici P (2000) NGF stimulation of erk phosphorylation is impaired by a point mutation in the transmembrane domain of trkA receptor. J Mol Neurosci 14(1-2):69–76. doi:10.1385/JMN:14:1-2:069

    Article  CAS  PubMed  Google Scholar 

  169. Dikic I, Batzer AG, Blaikie P, Obermeier A, Ullrich A, Schlessinger J, Margolis B (1995) Shc binding to nerve growth factor receptor is mediated by the phosphotyrosine interaction domain. J Biol Chem 270(25):15125–15129

    Article  CAS  PubMed  Google Scholar 

  170. Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10(3):381–391

    Article  CAS  PubMed  Google Scholar 

  171. Pierotti MA, Greco A (2006) Oncogenic rearrangements of the NTRK1/NGF receptor. Cancer Lett 232(1):90–98. doi:10.1016/j.canlet.2005.07.043

    Article  CAS  PubMed  Google Scholar 

  172. Obermeier A, Bradshaw RA, Seedorf K, Choidas A, Schlessinger J, Ullrich A (1994) Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. EMBO J 13(7):1585–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Stephens RM, Loeb DM, Copeland TD, Pawson T, Greene LA, Kaplan DR (1994) Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron 12(3):691–705

    Article  CAS  PubMed  Google Scholar 

  174. Cunningham ME, Stephens RM, Kaplan DR, Greene LA (1997) Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem 272(16):10957–10967

    Article  CAS  PubMed  Google Scholar 

  175. Obermeier A, Lammers R, Wiesmuller KH, Jung G, Schlessinger J, Ullrich A (1993) Identification of Trk binding sites for SHC and phosphatidylinositol 3’-kinase and formation of a multimeric signaling complex. J Biol Chem 268(31):22963–22966

    CAS  PubMed  Google Scholar 

  176. Soltoff SP, Rabin SL, Cantley LC, Kaplan DR (1992) Nerve growth factor promotes the activation of phosphatidylinositol 3-kinase and its association with the trk tyrosine kinase. J Biol Chem 267(24):17472–17477

    CAS  PubMed  Google Scholar 

  177. Holgado-Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ (1997) Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci U S A 94(23):12419–12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Korhonen JM, Said FA, Wong AJ, Kaplan DR (1999) Gab1 mediates neurite outgrowth, DNA synthesis, and survival in PC12 cells. J Biol Chem 274(52):37307–37314

    Article  CAS  PubMed  Google Scholar 

  179. Stachel SJ, Sanders JM, Henze DA, Rudd MT, Su HP, Li Y, Nanda KK, Egbertson MS, et al. (2014) Maximizing diversity from a kinase screen: identification of novel and selective pan-Trk inhibitors for chronic pain. J Med Chem 57(13):5800–5816. doi:10.1021/jm5006429

    Article  CAS  PubMed  Google Scholar 

  180. Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos AM (1999) Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J Mol Biol 290(1):149–159. doi:10.1006/jmbi.1999.2816

    Article  CAS  PubMed  Google Scholar 

  181. Mardy S, Miura Y, Endo F, Matsuda I, Sztriha L, Frossard P, Moosa A, Ismail EA, et al. (1999) Congenital insensitivity to pain with anhidrosis: novel mutations in the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor. Am J Hum Genet 64(6):1570–1579. doi:10.1086/302422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Miura Y, Mardy S, Awaya Y, Nihei K, Endo F, Matsuda I, Indo Y (2000) Mutation and polymorphism analysis of the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor in congenital insensitivity to pain with anhidrosis (CIPA) families. Hum Genet 106(1):116–124

    Article  CAS  PubMed  Google Scholar 

  183. Greco A, Villa R, Fusetti L, Orlandi R, Pierotti MA (2000) The Gly571Arg mutation, associated with the autonomic and sensory disorder congenital insensitivity to pain with anhidrosis, causes the inactivation of the NTRK1/nerve growth factor receptor. J Cell Physiol 182(1):127–133. doi:10.1002/(SICI)1097-4652

    Article  CAS  PubMed  Google Scholar 

  184. Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K, Kawano T, Mitsubuchi H, Tonoki H, et al. (1996) Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet 13(4):485–488. doi:10.1038/ng0896-485

    Article  CAS  PubMed  Google Scholar 

  185. Gao L, Guo H, Ye N, Bai Y, Liu X, Yu P, Xue Y, Ma S, et al. (2013) Oral and craniofacial manifestations and two novel missense mutations of the NTRK1 gene identified in the patient with congenital insensitivity to pain with anhidrosis. PLoS One 8(6):e66863. doi:10.1371/journal.pone.0066863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Indo Y (2001) Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor. Hum Mutat 18(6):462–471. doi:10.1002/humu.1224

    Article  CAS  PubMed  Google Scholar 

  187. Barbacid M (1995) Structural and functional properties of the TRK family of neurotrophin receptors. Ann N Y Acad Sci 766:442–458

    Article  CAS  PubMed  Google Scholar 

  188. Miranda C, Di Virgilio M, Selleri S, Zanotti G, Pagliardini S, Pierotti MA, Greco A (2002) Novel pathogenic mechanisms of congenital insensitivity to pain with anhidrosis genetic disorder unveiled by functional analysis of neurotrophic tyrosine receptor kinase type 1/nerve growth factor receptor mutations. J Biol Chem 277(8):6455–6462. doi:10.1074/jbc.M110016200

    Article  CAS  PubMed  Google Scholar 

  189. Greco A, Villa R, Tubino B, Romano L, Penso D, Pierotti MA (1999) A novel NTRK1 mutation associated with congenital insensitivity to pain with anhidrosis. Am J Hum Genet 64(4):1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang YH, Tang BS, Zhao AL, Xia K, Long ZG, Guo JF, Westaway SK, Hayflick SJ (2005) Novel compound heterozygous mutations in the PANK2 gene in a Chinese patient with atypical pantothenate kinase-associated neurodegeneration. Mov Disord 20(7):819–821. doi:10.1002/mds.20408

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kotzbauer PT, Truax AC, Trojanowski JQ, Lee VM (2005) Altered neuronal mitochondrial coenzyme A synthesis in neurodegeneration with brain iron accumulation caused by abnormal processing, stability, and catalytic activity of mutant pantothenate kinase 2. J Neurosci 25(3):689–698. doi:10.1523/JNEUROSCI.4265-04.2005

    Article  CAS  PubMed  Google Scholar 

  192. Hortnagel K, Prokisch H, Meitinger T (2003) An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria. Hum Mol Genet 12(3):321–327

    Article  CAS  PubMed  Google Scholar 

  193. Johnson MA, Kuo YM, Westaway SK, Parker SM, Ching KH, Gitschier J, Hayflick SJ (2004) Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Ann N Y Acad Sci 1012:282–298

    Article  CAS  PubMed  Google Scholar 

  194. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28(4):345–349. doi:10.1038/ng572

    Article  CAS  PubMed  Google Scholar 

  195. Calder RB, Williams RS, Ramaswamy G, Rock CO, Campbell E, Unkles SE, Kinghorn JR, Jackowski S (1999) Cloning and characterization of a eukaryotic pantothenate kinase gene (panK) from Aspergillus nidulans. J Biol Chem 274(4):2014–2020

    Article  CAS  PubMed  Google Scholar 

  196. Hong BS, Senisterra G, Rabeh WM, Vedadi M, Leonardi R, Zhang YM, Rock CO, Jackowski S, et al. (2007) Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J Biol Chem 282(38):27984–27993. doi:10.1074/jbc.M701915200

    Article  CAS  PubMed  Google Scholar 

  197. Hartig MB, Hortnagel K, Garavaglia B, Zorzi G, Kmiec T, Klopstock T, Rostasy K, Svetel M, et al. (2006) Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 59(2):248–256. doi:10.1002/ana.20771

    Article  CAS  PubMed  Google Scholar 

  198. Zhang YM, Rock CO, Jackowski S (2006) Biochemical properties of human pantothenate kinase 2 isoforms and mutations linked to pantothenate kinase-associated neurodegeneration. J Biol Chem 281(1):107–114. doi:10.1074/jbc.M508825200

    Article  CAS  PubMed  Google Scholar 

  199. Hayflick SJ (2003) Unraveling the Hallervorden-Spatz syndrome: pantothenate kinase-associated neurodegeneration is the name. Curr Opin Pediatr 15(6):572–577

    Article  PubMed  Google Scholar 

  200. Tanteles GA, Spanou-Aristidou E, Antoniou C, Christophidou-Anastasiadou V, Kleopa KA (2014) Novel homozygous PANK2 mutation causing atypical pantothenate kinase-associated neurodegeneration (PKAN) in a Cypriot family. J Neurol Sci 340(1-2):233–236. doi:10.1016/j.jns.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  201. Hayflick SJ (2003) Pantothenate kinase-associated neurodegeneration (formerly Hallervorden-Spatz syndrome). J Neurol Sci 207(1-2):106–107

    Article  PubMed  Google Scholar 

  202. McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, Shang H, Miyajima H, et al. (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70(18):1614–1619. doi:10.1212/01.wnl.0000310985.40011.d6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hayflick SJ, Hartman M, Coryell J, Gitschier J, Rowley H (2006) Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 27(6):1230–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Houlden H, Lincoln S, Farrer M, Cleland PG, Hardy J, Orrell RW (2003) Compound heterozygous PANK2 mutations confirm HARP and Hallervorden-Spatz syndromes are allelic. Neurology 61(10):1423–1426

    Article  CAS  PubMed  Google Scholar 

  205. Ching KH, Westaway SK, Gitschier J, Higgins JJ, Hayflick SJ (2002) HARP syndrome is allelic with pantothenate kinase-associated neurodegeneration. Neurology 58(11):1673–1674

    Article  CAS  PubMed  Google Scholar 

  206. Malandrini A, Cavallaro T, Fabrizi GM, Berti G, Salvestroni R, Salvadori C, Guazzi GC (1995) Ultrastructure and immunoreactivity of dystrophic axons indicate a different pathogenesis of Hallervorden-Spatz disease and infantile neuroaxonal dystrophy. Virchows Arch 427(4):415–421

    Article  CAS  PubMed  Google Scholar 

  207. Galvin JE, Giasson B, Hurtig HI, Lee VM, Trojanowski JQ (2000) Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 157(2):361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Neumann M, Adler S, Schluter O, Kremmer E, Benecke R, Kretzschmar HA (2000) Alpha-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol 100(5):568–574

    Article  CAS  PubMed  Google Scholar 

  209. Saito Y, Kawai M, Inoue K, Sasaki R, Arai H, Nanba E, Kuzuhara S, Ihara Y, et al. (2000) Widespread expression of alpha-synuclein and tau immunoreactivity in Hallervorden-Spatz syndrome with protracted clinical course. J Neurol Sci 177(1):48–59

    Article  CAS  PubMed  Google Scholar 

  210. Wakabayashi K, Fukushima T, Koide R, Horikawa Y, Hasegawa M, Watanabe Y, Noda T, Eguchi I, et al. (2000) Juvenile-onset generalized neuroaxonal dystrophy (Hallervorden-Spatz disease) with diffuse neurofibrillary and lewy body pathology. Acta Neuropathol 99(3):331–336

    Article  CAS  PubMed  Google Scholar 

  211. Hayflick SJ, Westaway SK, Levinson B, Zhou B, Johnson MA, Ching KH, Gitschier J (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348(1):33–40. doi:10.1056/NEJMoa020817

    Article  CAS  PubMed  Google Scholar 

  212. Gregory A, Hayflick SJ (2005) Neurodegeneration with brain iron accumulation. Folia Neuropathol 43(4):286–296

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Chan KY, Lam CW, Lee LP, Tong SF, Yuen YP (2008) Pantothenate kinase-associated neurodegeneration in two Chinese children: identification of a novel PANK2 gene mutation. Hong Kong Med J 14(1):70–73

    CAS  PubMed  Google Scholar 

  214. Leonardi R, Zhang YM, Rock CO, Jackowski S (2005) Coenzyme A: back in action. Prog Lipid Res 44(2-3):125–153. doi:10.1016/j.plipres.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  215. Begley TP, Kinsland C, Strauss E (2001) The biosynthesis of coenzyme A in bacteria. Vitam Horm 61:157–171

    Article  CAS  PubMed  Google Scholar 

  216. Dooling EC, Schoene WC, Richardson EP Jr (1974) Hallervorden-Spatz syndrome. Arch Neurol 30(1):70–83

    Article  CAS  PubMed  Google Scholar 

  217. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252(1):165–172. doi:10.1148/radiol.2522081399

    Article  PubMed  Google Scholar 

  218. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2009) MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage 47(2):493–500. doi:10.1016/j.neuroimage.2009.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  219. Pellecchia MT, Valente EM, Cif L, Salvi S, Albanese A, Scarano V, Bonuccelli U, Bentivoglio AR, et al. (2005) The diverse phenotype and genotype of pantothenate kinase-associated neurodegeneration. Neurology 64(10):1810–1812. doi:10.1212/01.WNL.0000161843.52641.EC

    Article  CAS  PubMed  Google Scholar 

  220. Swaiman KF (1991) Hallervorden-Spatz syndrome and brain iron metabolism. Arch Neurol 48(12):1285–1293

Download references

Acknowledgments

NS sincerely thanks University Grants Commission for awarding Maulana Azad National Fellowship (MANF-JRF). VK thanks Department of Science and Technology for the award of DST-Fast track Fellowship (SB/YS/LS-161/2014). FA and MIH gratefully acknowledge the final support from the Department of Science and Technology, Ministry of Science and Technology (EMR/2015/002372), India. SA is grateful to Department of Science and Technology (DST), Government of India for the award of J. C. Bose National Fellowship. FIST support of DST is highly acknowledged (SR/FST/LSI-541/2012).

Author Contributions

VK conceived, designed and supervised the review. NS and VK wrote the manuscript. VK, AI, SA, FA and MIH analysed the contents and revised the paper. All authors approved the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imtaiyaz Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sami, N., Kumar, V., Islam, A. et al. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration. Mol Neurobiol 54, 5085–5106 (2017). https://doi.org/10.1007/s12035-016-0046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0046-5

Keywords

Navigation