Skip to main content

Advertisement

Log in

Effects of Sex Steroids in the Human Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Whalen RE, Etgen AM (1978) Masculinization and defeminization induced in female hamsters by neonatal treatment with estradiol benzoate and RU-2858. Horm Behav 10(2):170–177

    Article  CAS  PubMed  Google Scholar 

  2. Sato T, Matsumoto T, Kawano H, Watanabe T, Uematsu Y, Sekine K, Fukuda T, Aihara K et al (2004) Brain masculinization requires androgen receptor function. Proc Natl Acad Sci U S A 101(6):1673–1678. doi:10.1073/pnas.0305303101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hillman DA (1959) Fetal masculinization with maternal progesterone therapy. Can Med Assoc J 80(3):200–201

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Breton AB, Austin KJ, Leedy MG, Alexander BM (2012) Effects of progesterone and RU486 on the development and expression of adult male sexual behaviour and gene expression in the amygdala and preoptic area of the hypothalamus. Reprod Fertil Dev 24(7):916–922. doi:10.1071/RD12006

    Article  CAS  PubMed  Google Scholar 

  5. Lee SJ, McEwen BS (2001) Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Annu Rev Pharmacol Toxicol 41:569–591. doi:10.1146/annurev.pharmtox.41.1.569

    Article  CAS  PubMed  Google Scholar 

  6. Hussain R, Ghoumari AM, Bielecki B, Steibel J, Boehm N, Liere P, Macklin WB, Kumar N et al (2013) The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain: a Journal of Neurology 136(Pt 1):132–146. doi:10.1093/brain/aws284

    Article  Google Scholar 

  7. Barha CK, Ishrat T, Epp JR, Galea LA, Stein DG (2011) Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp Neurol 231(1):72–81. doi:10.1016/j.expneurol.2011.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wong R, Renton C, Gibson CL, Murphy SJ, Kendall DA, Bath PM, Progesterone Pre-Clinical Stroke Pooling Project C (2013) Progesterone treatment for experimental stroke: an individual animal meta-analysis. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 33(9):1362–1372. doi:10.1038/jcbfm.2013.120

    Article  CAS  Google Scholar 

  9. Goldstein JM, Seidman LJ, O'Brien LM, Horton NJ, Kennedy DN, Makris N, Caviness VS Jr, Faraone SV et al (2002) Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry 59(2):154–164

    Article  PubMed  Google Scholar 

  10. Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7(6):477–484. doi:10.1038/nrn1909

    Article  CAS  PubMed  Google Scholar 

  11. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(12):947–957. doi:10.1038/nrn2513

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Altemus M (2010) Hormone-specific psychiatric disorders: do they exist? Archives of Women’s Mental Health 13(1):25–26. doi:10.1007/s00737-009-0123-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Riecher-Rossler A, Kulkarni J (2011) Estrogens and gonadal function in schizophrenia and related psychoses. Curr Top Behav Neurosci 8:155–171. doi:10.1007/7854_2010_100

    Article  CAS  PubMed  Google Scholar 

  14. Akhondzadeh S, Rezaei F, Larijani B, Nejatisafa AA, Kashani L, Abbasi SH (2006) Correlation between testosterone, gonadotropins and prolactin and severity of negative symptoms in male patients with chronic schizophrenia. Schizophr Res 84(2–3):405–410. doi:10.1016/j.schres.2006.02.008

    Article  PubMed  Google Scholar 

  15. Mason JW, Giller EL, Kosten TR (1988) Serum testosterone differences between patients with schizophrenia and those with affective disorder. Biol Psychiatry 23(4):357–366

    Article  CAS  PubMed  Google Scholar 

  16. Champagne J, Lakis N, Bourque J, Stip E, Lipp O, Mendrek A (2012) Progesterone and cerebral function during emotion processing in men and women with schizophrenia. Schizophrenia research and treatment 2012:917901. doi:10.1155/2012/917901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zamani MR, Desmond NL, Levy WB (2000) Estradiol modulates long-term synaptic depression in female rat hippocampus. J Neurophysiol 84(4):1800–1808

    CAS  PubMed  Google Scholar 

  18. Desmond NL, Zhang DX, Levy WB (2000) Estradiol enhances the induction of homosynaptic long-term depression in the CA1 region of the adult, ovariectomized rat. Neurobiol Learn Mem 73(2):180–187. doi:10.1006/nlme.1999.3929

    Article  CAS  PubMed  Google Scholar 

  19. Booth A, Johnson DR, Granger DA (1999) Testosterone and men’s depression: the role of social behavior. J Health Soc Behav 40(2):130–140

    Article  CAS  PubMed  Google Scholar 

  20. Schweiger U, Deuschle M, Weber B, Korner A, Lammers CH, Schmider J, Gotthardt U, Heuser I (1999) Testosterone, gonadotropin, and cortisol secretion in male patients with major depression. Psychosom Med 61(3):292–296

    Article  CAS  PubMed  Google Scholar 

  21. Hull EM, Lorrain DS, Du J, Matuszewich L, Lumley LA, Putnam SK, Moses J (1999) Hormone-neurotransmitter interactions in the control of sexual behavior. Behav Brain Res 105(1):105–116

    Article  CAS  PubMed  Google Scholar 

  22. Shackleton CH (2012) Role of a disordered steroid metabolome in the elucidation of sterol and steroid biosynthesis. Lipids 47(1):1–12. doi:10.1007/s11745-011-3605-6

    Article  CAS  PubMed  Google Scholar 

  23. Quinones MP, Kaddurah-Daouk R (2009) Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiol Dis 35(2):165–176. doi:10.1016/j.nbd.2009.02.019

    Article  CAS  PubMed  Google Scholar 

  24. Graham SF, Chevallier OP, Roberts D, Holscher C, Elliott CT, Green BD (2013) Investigation of the human brain metabolome to identify potential markers for early diagnosis and therapeutic targets of Alzheimer’s disease. Anal Chem 85(3):1803–1811. doi:10.1021/ac303163f

    Article  CAS  PubMed  Google Scholar 

  25. Bicikova M, Hill M, Ripova D, Mohr P, Hampl R (2013) Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J Steroid Biochem Mol Biol 133:77–83. doi:10.1016/j.jsbmb.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  26. Kancheva R, Hill M, Novak Z, Chrastina J, Velikova M, Kancheva L, Riha I, Starka L (2010) Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J Steroid Biochem Mol Biol 119(1–2):35–44. doi:10.1016/j.jsbmb.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  27. Kancheva R, Hill M, Novak Z, Chrastina J, Kancheva L, Starka L (2011) Neuroactive steroids in periphery and cerebrospinal fluid. Neuroscience 191:22–27. doi:10.1016/j.neuroscience.2011.05.054

    Article  CAS  PubMed  Google Scholar 

  28. Hill M, Parizek A, Cibula D, Kancheva R, Jirasek JE, Jirkovska M, Velikova M, Kubatova J et al (2010) Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J Steroid Biochem Mol Biol 122(4):114–132. doi:10.1016/j.jsbmb.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  29. Hill M, Parizek A, Kancheva R, Duskova M, Velikova M, Kriz L, Klimkova M, Paskova A et al (2010) Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J Steroid Biochem Mol Biol 121(3–5):594–610. doi:10.1016/j.jsbmb.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  30. Pardridge WM, Mietus LJ (1979) Transport of steroid-hormones through the rat blood-brain-barrier—primary role of albumin-bound hormone. J Clin Invest 64(1):145–154. doi:10.1172/Jci109433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. York B, Sagen JV, Tsimelzon A, Louet JF, Chopra AR, Reineke EL, Zhou S, Stevens RD et al (2013) Research resource: tissue- and pathway-specific metabolomic profiles of the steroid receptor coactivator (SRC) family. Mol Endocrinol 27(2):366–380. doi:10.1210/me.2012-1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. York B, O'Malley BW (2010) Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285(50):38743–38750. doi:10.1074/jbc.R110.193367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma TP, Herkimer C, West C, Ye W, Birch R, Robinson JE, Foster DL, Padmanabhan V (2002) Fetal programming: prenatal androgen disrupts positive feedback actions of estradiol but does not affect timing of puberty in female sheep. Biol Reprod 66(4):924–933

    Article  CAS  PubMed  Google Scholar 

  34. Schoeters G, Den Hond E, Dhooge W, van Larebeke N, Leijs M (2008) Endocrine disruptors and abnormalities of pubertal development. Basic & Clinical Pharmacology & Toxicology 102(2):168–175. doi:10.1111/j.1742-7843.2007.00180.x

    Article  CAS  Google Scholar 

  35. Kwon S, Stedman DB, Elswick BA, Cattley RC, Welsch F (2000) Pubertal development and reproductive functions of Crl:CD BR Sprague-Dawley rats exposed to bisphenol a during prenatal and postnatal development. Toxicological Sciences: an Official Journal of the Society of Toxicology 55(2):399–406

    Article  CAS  Google Scholar 

  36. Pankevich DE, Mueller BR, Brockel B, Bale TL (2009) Prenatal stress programming of offspring feeding behavior and energy balance begins early in pregnancy. Physiol Behav 98(1–2):94–102. doi:10.1016/j.physbeh.2009.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Finegan JA, Bartleman B, Wong PY (1989) A window for the study of prenatal sex hormone influences on postnatal development. J Genet Psychol 150(1):101–112. doi:10.1080/00221325.1989.9914580

    Article  CAS  PubMed  Google Scholar 

  38. Tabor A, Philip J, Madsen M, Bang J, Obel EB, Norgaard-Pedersen B (1986) Randomised controlled trial of genetic amniocentesis in 4606 low-risk women. Lancet 1(8493):1287–1293

    Article  CAS  PubMed  Google Scholar 

  39. Knickmeyer RC, Baron-Cohen S (2006) Fetal testosterone and sex differences in typical social development and in autism. J Child Neurol 21(10):825–845

    Article  PubMed  Google Scholar 

  40. Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G (2009) Fetal testosterone and autistic traits. Br J Psychol 100(Pt 1):1–22. doi:10.1348/000712608X311731

    Article  PubMed  Google Scholar 

  41. Baron-Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R (2011) Why are autism spectrum conditions more prevalent in males? PLoS Biol 9(6):e1001081. doi:10.1371/journal.pbio.1001081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G, Hines M (2009) Fetal testosterone predicts sexually differentiated childhood behavior in girls and in boys. Psychol Sci 20(2):144–148. doi:10.1111/j.1467-9280.2009.02279.x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Girard N (2005) Which diagnostics and which technics in fetal neuro-MRI? JBR-BTR 88(5):265–266

    CAS  PubMed  Google Scholar 

  44. Zhan J, Dinov ID, Li J, Zhang Z, Hobel S, Shi Y, Lin X, Zamanyan A et al (2013) Spatial-temporal atlas of human fetal brain development during the early second trimester. NeuroImage 82:115–126. doi:10.1016/j.neuroimage.2013.05.063

    Article  PubMed  Google Scholar 

  45. Thomason ME, Dassanayake MT, Shen S, Katkuri Y, Alexis M, Anderson AL, Yeo L, Mody S et al (2013) Cross-hemispheric functional connectivity in the human fetal brain. Sci Transl Med 5(173):173ra124. doi:10.1126/scitranslmed.3004978

    Article  Google Scholar 

  46. Anderson AL, Thomason ME (2013) Functional plasticity before the cradle: a review of neural functional imaging in the human fetus. Neurosci Biobehav Rev 37(9 Pt B):2220–2232. doi:10.1016/j.neubiorev.2013.03.013

    Article  PubMed  Google Scholar 

  47. Brighina E, Bresolin N, Pardi G, Rango M (2009) Human fetal brain chemistry as detected by proton magnetic resonance spectroscopy. Pediatr Neurol 40(5):327–342. doi:10.1016/j.pediatrneurol.2008.11.001

    Article  PubMed  Google Scholar 

  48. Girard N, Gouny SC, Viola A, Le Fur Y, Viout P, Chaumoitre K, D'Ercole C, Gire C et al (2006) Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 56(4):768–775. doi:10.1002/mrm.21017

    Article  Google Scholar 

  49. Heerschap A, van den Berg PP (1994) Proton magnetic resonance spectroscopy of human fetal brain. Am J Obstet Gynecol 170(4):1150–1151

    Article  CAS  PubMed  Google Scholar 

  50. Kok RD, van den Bergh AJ, Heerschap A, Nijland R, van den Berg PP (2001) Metabolic information from the human fetal brain obtained with proton magnetic resonance spectroscopy. Am J Obstet Gynecol 185(5):1011–1015. doi:10.1067/mob.2001.117677

    Article  CAS  PubMed  Google Scholar 

  51. Pugash D, Krssak M, Kulemann V, Prayer D (2009) Magnetic resonance spectroscopy of the fetal brain. Prenat Diagn 29(4):434–441. doi:10.1002/pd.2248

    Article  PubMed  Google Scholar 

  52. Nguyen TV, McCracken J, Ducharme S, Botteron KN, Mahabir M, Johnson W, Israel M, Evans AC et al (2013) Testosterone-related cortical maturation across childhood and adolescence. Cereb Cortex 23(6):1424–1432. doi:10.1093/cercor/bhs125

    Article  PubMed  Google Scholar 

  53. Nguyen TV, McCracken JT, Ducharme S, Cropp BF, Botteron KN, Evans AC, Karama S (2013) Interactive effects of dehydroepiandrosterone and testosterone on cortical thickness during early brain development. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 33(26):10840–10848. doi:10.1523/JNEUROSCI.5747-12.2013

    Article  CAS  Google Scholar 

  54. Koolschijn PC, Peper JS, Crone EA (2014) The influence of sex steroids on structural brain maturation in adolescence. PLoS One 9(1):e83929. doi:10.1371/journal.pone.0083929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Peper JS, Brouwer RM, Schnack HG, van Baal GC, van Leeuwen M, van den Berg SM, Delemarre-Van de Waal HA, Boomsma DI et al (2009) Sex steroids and brain structure in pubertal boys and girls. Psychoneuroendocrinology 34(3):332–342. doi:10.1016/j.psyneuen.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  56. Young LJ, Nag PK, Crews D (1995) Regulation of estrogen receptor and progesterone receptor messenger ribonucleic acid by estrogen in the brain of the whiptail lizard (Cnemidophorus uniparens). J Neuroendocrinol 7(2):119–125

    Article  CAS  PubMed  Google Scholar 

  57. den Heijer T, Schuit SC, Pols HA, van Meurs JB, Hofman A, Koudstaal PJ, van Duijn CM, Uitterlinden AG et al (2004) Variations in estrogen receptor alpha gene and risk of dementia, and brain volumes on MRI. Mol Psychiatry 9(12):1129–1135. doi:10.1038/sj.mp.4001553

    Article  CAS  Google Scholar 

  58. Boccardi M, Scassellati C, Ghidoni R, Testa C, Benussi L, Bonetti M, Bocchio-Chiavetto L, Gennarelli M et al (2008) Effect of the XbaI polymorphism of estrogen receptor alpha on postmenopausal gray matter. Neurosci Lett 434(3):304–309. doi:10.1016/j.neulet.2008.01.076

    Article  CAS  PubMed  Google Scholar 

  59. Sundermann EE, Maki PM, Bishop JR (2010) A review of estrogen receptor alpha gene (ESR1) polymorphisms, mood, and cognition. Menopause 17(4):874–886. doi:10.1097/gme.0b013e3181df4a19

    Article  PubMed  PubMed Central  Google Scholar 

  60. Szyf M, Weaver IC, Champagne FA, Diorio J, Meaney MJ (2005) Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Front Neuroendocrinol 26(3–4):139–162. doi:10.1016/j.yfrne.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  61. Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ (2006) Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology 147(6):2909–2915. doi:10.1210/en.2005-1119

    Article  CAS  PubMed  Google Scholar 

  62. McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, Murray EK, Nugent BM et al (2009) The epigenetics of sex differences in the brain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 29(41):12815–12823. doi:10.1523/JNEUROSCI.3331-09.2009

    Article  CAS  Google Scholar 

  63. Baek SH, Ohgi KA, Nelson CA, Welsbie D, Chen C, Sawyers CL, Rose DW, Rosenfeld MG (2006) Ligand-specific allosteric regulation of coactivator functions of androgen receptor in prostate cancer cells. Proc Natl Acad Sci U S A 103(9):3100–3105. doi:10.1073/pnas.0510842103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kahl P, Gullotti L, Heukamp LC, Wolf S, Friedrichs N, Vorreuther R, Solleder G, Bastian PJ et al (2006) Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res 66(23):11341–11347. doi:10.1158/0008-5472.CAN-06-1570

    Article  CAS  PubMed  Google Scholar 

  65. Tsai HW, Grant PA, Rissman EF (2009) Sex differences in histone modifications in the neonatal mouse brain. Epigenetics: Official Journal of the DNA Methylation Society 4(1):47–53

    Article  CAS  Google Scholar 

  66. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, Colantuoni EA, Elkahloun AG et al (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478(7370):519–523. doi:10.1038/nature10524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maier T, Guell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973. doi:10.1016/j.febslet.2009.10.036

    Article  CAS  PubMed  Google Scholar 

  68. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232. doi:10.1038/nrg3185

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, Iorio MV, Li M et al (2010) MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. J Natl Cancer Inst 102(10):706–721. doi:10.1093/jnci/djq102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamagata K, Fujiyama S, Ito S, Ueda T, Murata T, Naitou M, Takeyama K, Minami Y et al (2009) Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell 36(2):340–347. doi:10.1016/j.molcel.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  71. Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, Barton G, Jiao LR et al (2009) The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci U S A 106(37):15732–15737. doi:10.1073/pnas.0906947106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang Z, Wang L (2011) Regulation of microRNA expression and function by nuclear receptor signaling. Cell & Bioscience 1(1):31. doi:10.1186/2045-3701-1-31

    Article  CAS  Google Scholar 

  73. Arnold AP (2004) Sex chromosomes and brain gender. Nat Rev Neurosci 5(9):701–708. doi:10.1038/nrn1494

    Article  CAS  PubMed  Google Scholar 

  74. Gatewood JD, Wills A, Shetty S, Xu J, Arnold AP, Burgoyne PS, Rissman EF (2006) Sex chromosome complement and gonadal sex influence aggressive and parental behaviors in mice. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 26(8):2335–2342. doi:10.1523/JNEUROSCI.3743-05.2006

    Article  CAS  Google Scholar 

  75. Grgurevic N, Budefeld T, Spanic T, Tobet SA, Majdic G (2012) Evidence that sex chromosome genes affect sexual differentiation of female sexual behavior. Horm Behav 61(5):719–724. doi:10.1016/j.yhbeh.2012.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Majdic G, Tobet S (2011) Cooperation of sex chromosomal genes and endocrine influences for hypothalamic sexual differentiation. Front Neuroendocrinol 32(2):137–145. doi:10.1016/j.yfrne.2011.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nachman MW, Aquadro CF (1994) Polymorphism and divergence at the 5' flanking region of the sex-determining locus, Sry, in mice. Mol Biol Evol 11(3):539–547

    CAS  PubMed  Google Scholar 

  78. Coward P, Nagai K, Chen D, Thomas HD, Nagamine CM, Lau YF (1994) Polymorphism of a CAG trinucleotide repeat within Sry correlates with B6.YDom sex reversal. Nat Genet 6(3):245–250. doi:10.1038/ng0394-245

    Article  CAS  PubMed  Google Scholar 

  79. Baum MJ (2009) New evidence that an epigenetic mechanism mediates testosterone-dependent brain masculinization. Endocrinology 150(9):3980–3982. doi:10.1210/en.2009-0664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bakker J, Baum MJ (2008) Role for estradiol in female-typical brain and behavioral sexual differentiation. Front Neuroendocrinol 29(1):1–16. doi:10.1016/j.yfrne.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  81. Palaszynski KM, Smith DL, Kamrava S, Burgoyne PS, Arnold AP, Voskuhl RR (2005) A yin-yang effect between sex chromosome complement and sex hormones on the immune response. Endocrinology 146(8):3280–3285. doi:10.1210/en.2005-0284

    Article  CAS  PubMed  Google Scholar 

  82. Amin Z, Canli T, Epperson CN (2005) Effect of estrogen-serotonin interactions on mood and cognition. Behav Cogn Neurosci Rev 4(1):43–58. doi:10.1177/1534582305277152

    Article  PubMed  Google Scholar 

  83. Soares CN, Frey BN (2010) Challenges and opportunities to manage depression during the menopausal transition and beyond. The Psychiatric Clinics of North America 33(2):295–308. doi:10.1016/j.psc.2010.01.007

    Article  PubMed  Google Scholar 

  84. Soares CN, Poitras JR, Prouty J (2003) Effect of reproductive hormones and selective estrogen receptor modulators on mood during menopause. Drugs Aging 20(2):85–100

    Article  CAS  PubMed  Google Scholar 

  85. Hedges VL, Staffend NA, Meisel RL (2010) Neural mechanisms of reproduction in females as a predisposing factor for drug addiction. Front Neuroendocrinol 31(2):217–231. doi:10.1016/J.Yfrne.2010.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cyr M, Ghribi O, Thibault C, Morissette M, Landry M, Di Paolo T (2001) Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Res Brain Res Rev 37(1–3):153–161

    Article  CAS  PubMed  Google Scholar 

  87. Wojtowicz T, Mozrzymas JW (2010) Estradiol and GABAergic transmission in the hippocampus. Vitam Horm 82:279–300. doi:10.1016/S0083-6729(10)82015-1

    Article  CAS  PubMed  Google Scholar 

  88. Wojtowicz T, Lebida K, Mozrzymas JW (2008) 17Beta-estradiol affects GABAergic transmission in developing hippocampus. Brain Res 1241:7–17. doi:10.1016/j.brainres.2008.09.005

    Article  CAS  PubMed  Google Scholar 

  89. Genazzani AR, Stomati M, Morittu A, Bernardi F, Monteleone P, Casarosa E, Gallo R, Salvestroni C et al (2000) Progesterone, progestagens and the central nervous system. Hum Reprod 15(Suppl 1):14–27

    Article  CAS  PubMed  Google Scholar 

  90. Birzniece V, Backstrom T, Johansson IM, Lindblad C, Lundgren P, Lofgren M, Olsson T, Ragagnin G et al (2006) Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. Brain Res Rev 51(2):212–239. doi:10.1016/j.brainresrev.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  91. Dluzen DE, Ramirez VD (1987) Intermittent infusion of progesterone potentiates whereas continuous infusion reduces amphetamine-stimulated dopamine release from ovariectomized estrogen-primed rat striatal fragments superfused in vitro. Brain Res 406(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  92. Pluchino N, Luisi M, Lenzi E, Centofanti M, Begliuomini S, Freschi L, Ninni F, Genazzani AR (2006) Progesterone and progestins: effects on brain, allopregnanolone and beta-endorphin. J Steroid Biochem Mol Biol 102(1–5):205–213. doi:10.1016/j.jsbmb.2006.09.023

    Article  CAS  PubMed  Google Scholar 

  93. Quinones-Jenab V, Jenab S (2010) Progesterone attenuates cocaine-induced responses. Horm Behav 58(1):22–32. doi:10.1016/j.yhbeh.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  94. Backstrom T, Haage D, Lofgren M, Johansson IM, Stromberg J, Nyberg S, Andreen L, Ossewaarde L et al (2011) Paradoxical effects of GABA-A modulators may explain sex steroid induced negative mood symptoms in some persons. Neuroscience 191:46–54. doi:10.1016/J.Neuroscience.2011.03.061

    Article  CAS  PubMed  Google Scholar 

  95. Stein DG (2005) The case for progesterone. Ann N Y Acad Sci 1052:152–169. doi:10.1196/annals.1347.011

    Article  CAS  PubMed  Google Scholar 

  96. Rupprecht R, Holsboer F (1999) Neuroactive steroids: mechanisms of action and neuropsychopharmacological perspectives. Trends Neurosci 22(9):410–416

    Article  CAS  PubMed  Google Scholar 

  97. Ebinger M, Sievers C, Ivan D, Schneider HJ, Stalla GK (2009) Is there a neuroendocrinological rationale for testosterone as a therapeutic option in depression? J Psychopharmacol 23(7):841–853. doi:10.1177/0269881108092337

    Article  CAS  PubMed  Google Scholar 

  98. Martinez-Mota L, Fernandez-Guasti A (2004) Testosterone-dependent antidepressant-like effect of noradrenergic but not of serotonergic drugs. Pharmacol Biochem Behav 78(4):711–718. doi:10.1016/j.pbb.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  99. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH (2009) Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 30(1):65–91. doi:10.1016/j.yfrne.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  100. Schmidt PJ, Berlin KL, Danaceau MA, Neeren A, Haq NA, Roca CA, Rubinow DR (2004) The effects of pharmacologically induced hypogonadism on mood in healthy men. Arch Gen Psychiatry 61(10):997–1004. doi:10.1001/archpsyc.61.10.997

    Article  PubMed  Google Scholar 

  101. Bromberger JT, Schott LL, Kravitz HM, Sowers M, Avis NE, Gold EB, Randolph JF, Matthews KA (2010) Longitudinal change in reproductive hormones and depressive symptoms across the menopausal transition. Arch Gen Psychiatry 67(6):598–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zweifel JE, O'Brien WH (1997) A meta-analysis of the effect of hormone replacement therapy upon depressed mood (vol 22, pg 189, 1997). Psychoneuroendocrinology 22(8):655–655

    Article  Google Scholar 

  103. Handa RJ, Burgess LH, Kerr JE, O'Keefe JA (1994) Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 28(4):464–476. doi:10.1006/hbeh.1994.1044

    Article  CAS  PubMed  Google Scholar 

  104. Kudielka BM, Kirschbaum C (2005) Sex differences in HPA axis responses to stress: a review. Biol Psychol 69(1):113–132. doi:10.1016/j.biopsycho.2004.11.009

    Article  PubMed  Google Scholar 

  105. Kudielka BM, Buske-Kirschbaum A, Hellhammer DH, Kirschbaum C (2004) HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology 29(1):83–98

    Article  CAS  PubMed  Google Scholar 

  106. Altemus M (2006) Sex differences in depression and anxiety disorders: potential biological determinants. Horm Behav 50(4):534–538. doi:10.1016/j.yhbeh.2006.06.031

    Article  PubMed  Google Scholar 

  107. Rivier C, Rivest S (1991) Effect of stress on the activity of the hypothalamic-pituitary-gonadal axis: peripheral and central mechanisms. Biol Reprod 45(4):523–532

    Article  CAS  PubMed  Google Scholar 

  108. Viau V (2002) Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Neuroendocrinol 14(6):506–513

    Article  CAS  PubMed  Google Scholar 

  109. Viau V, Soriano L, Dallman MF (2001) Androgens alter corticotropin releasing hormone and arginine vasopressin mRNA within forebrain sites known to regulate activity in the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 13(5):442–452

    Article  CAS  PubMed  Google Scholar 

  110. Gong H, Jarzynka MJ, Cole TJ, Lee JH, Wada T, Zhang B, Gao J, Song WC et al (2008) Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res 68(18):7386–7393. doi:10.1158/0008-5472.CAN-08-1545

    Article  CAS  PubMed  Google Scholar 

  111. Seckl JR, Dickson KL, Yates C, Fink G (1991) Distribution of glucocorticoid and mineralocorticoid receptor messenger RNA expression in human postmortem hippocampus. Brain Res 561(2):332–337

    Article  CAS  PubMed  Google Scholar 

  112. Sanchez MM, Young LJ, Plotsky PM, Insel TR (2000) Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 20(12):4657–4668

    CAS  Google Scholar 

  113. Young LJ, Wang Z (2004) The neurobiology of pair bonding. Nat Neurosci 7(10):1048–1054. doi:10.1038/nn1327

    Article  CAS  PubMed  Google Scholar 

  114. Kendrick KM (2000) Oxytocin, motherhood and bonding. Experimental Physiology 85 Spec No:111S–124S

  115. Lim MM, Wang Z, Olazabal DE, Ren X, Terwilliger EF, Young LJ (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429(6993):754–757. doi:10.1038/nature02539

    Article  CAS  PubMed  Google Scholar 

  116. Pitkow LJ, Sharer CA, Ren X, Insel TR, Terwilliger EF, Young LJ (2001) Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 21(18):7392–7396

    CAS  Google Scholar 

  117. Alves SE, Lopez V, McEwen BS, Weiland NG (1998) Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopressin in the paraventricular and supraoptic nuclei of the female rat brain: an immunocytochemical study. Proc Natl Acad Sci U S A 95(6):3281–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tribollet E, Audigier S, Dubois-Dauphin M, Dreifuss JJ (1990) Gonadal steroids regulate oxytocin receptors but not vasopressin receptors in the brain of male and female rats. An autoradiographical study. Brain Res 511(1):129–140

    Article  CAS  PubMed  Google Scholar 

  119. Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81(2):629–683

    CAS  PubMed  Google Scholar 

  120. de Vries GJ, Duetz W, Buijs RM, van Heerikhuize J, Vreeburg JT (1986) Effects of androgens and estrogens on the vasopressin and oxytocin innervation of the adult rat brain. Brain Res 399(2):296–302

    Article  PubMed  Google Scholar 

  121. Shapiro RA, Xu C, Dorsa DM (2000) Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta. Endocrinology 141(11):4056–4064. doi:10.1210/endo.141.11.7796

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif Karama.

Glossary

Amniocentesis:

A medical procedure used in the prenatal diagnosis of chromosomal abnormalities and fetal infections and also used for sex determination in which a small amount of amniotic fluid, which contains fetal tissues, is sampled from the amnion or amniotic sac surrounding a developing fetus.

Chromatin:

Chromatin is the combination or complex of DNA and proteins that make up the contents of the nucleus of a cell. The primary protein components of chromatin are histones that are involved in compacting DNA material.

CpG site/island:

CpG sites are locations within the DNA when a cytosine occurs next to a guanine and where they are only separated by one phosphate bond (cytosine-phosphate-guanine). CpG islands are areas rich in CpG sites, usually targeted by DNA methylation processes.

DNA methylation:

DNA methylation is the biochemical process through which a methyl group is added to cytosine rings with the specific sequence “cytosine nucleotide-phosphate-guanine nucleotide.” DNA methylation stably alters the expression of genes in cells not only when they differentiate from embryonic stem cells into specific tissues but also during postnatal life.

Epigenetics:

Epigenetics is the study of potentially heritable changes in gene activity that are not caused by changes in the DNA sequence; it also can be used to describe stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable. Examples of epigenetic changes include DNA methylation and histone modifications.

Histone modifications:

Histones are the chief protein components of chromatin, acting as spools around which DNA winds, and play a role in gene regulation. Histone modifications can alter the structure of chromatin and, in turn, alter the transcriptional efficiency of specific genes.

HPA axis:

The hypothalamo-pituitary-adrenal axis is a complex set of interactions among three endocrine glands: the hypothalamus, the pituitary gland, and the adrenal glands. The interactions among these organs constitute the HPA axis, a major part of the neuroendocrine system that controls reactions to stress and regulates many body processes, including digestion, the immune system, mood and emotions, sexuality, energy storage, and expenditure.

HPG axis:

The hypothalamo-pituitary-gonadal axis is a complex set of interactions among three endocrine glands: the hypothalamus, the pituitary gland, and the gonads (ovaries in females, testes in males). The hypothalamic gonadotropin-releasing hormone (GnRH) stimulates the release of the follicular stimulating hormone (FSH) and luteinizing hormone (LH), and these, in turn, regulate the gonadal production of estradiol, testosterone and progesterone. This axis controls development, reproduction, and aging in animals, with possibly more widespread effects in the human central nervous system and immune system.

MeCP2:

The methyl-CpG-binding protein 2 (or MeCP2) gene is located on the long (q) arm of the X chromosome in band 28 (“Xq28”). This protein binds methylated DNA and is involved in turning off (“repressing” or “silencing“) several other genes.

Metabolomics:

Metabolomics is the systematic study of the unique chemical fingerprints that specific cellular processes leave behind. The metabolome represents the collection of all metabolites, in this case sex steroid metabolites, in a biological cell, tissue, organ or organism, which are the end products of hormonal-related cellular processes.

microRNA:

A microRNA is a small non-coding RNA molecule (containing about 22 nucleotides) found in plants, animals, and some viruses, which functions in RNA silencing and post-transcriptional regulation of gene expression.

Oxytocin:

Oxytocin is a mammalian neurohypophysial hormone (secreted by the posterior pituitary) that acts primarily as a neuromodulator in the brain. Oxytocin plays an important role in the neuroanatomy of intimacy, specifically in sexual reproduction, in particular during and after childbirth.

Polymorphisms:

A genetic polymorphism is the occurrence in the same population of two or more alleles at one locus, each with appreciable frequency (the minimum frequency typically taken as 1 %).

Post-translational:

Translation is the process whereby an mRNA is processed by ribosomes, which in turn, leads to protein synthesis. Post-translational changes usually refer to any changes at the protein level, such as protein modifications and degradation processes.

Pre-transcriptional:

Transcription is the first step of gene expression, in which a particular segment of DNA is copied into RNA by the enzyme RNA polymerase. Modifications that occur before the transcription from DNA to mRNA are pre-transcriptional and commonly target the transcriptional process through DNA methylation or histone modifications.

Pre-translational:

Modifications that occur after the transcription from DNA to RNA and before the translation from mRNA to protein are called pre-translational and commonly target the translational process through modifications of the mRNA (e.g., through microRNA regulation) and mRNA degradation processes.

Proteomics:

Proteomics is the large-scale study of proteins, particularly their structures and functions. The proteome is the entire set of proteins, produced or modified by an organism or system. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes. One of the challenges of systems biology and functional genomics is to integrate proteomic, transcriptomic, and metabolomic information to give a more complete picture of living organisms.

Sex chromosome complement:

The pair of XX or XY sex chromosomes, which is usually counted as the 23rd pair of chromosomes in humans.

SRY gene:

The sex-determining region Y (or SRY) gene leads to the expression of a specific transcription factor, altering gene expression such that a functional male reproductive system is formed (including functional testes) and is directly responsible for the second-trimester surge of testosterone in male fetuses.

Transcriptomics:

The transcriptome is the set of all RNA molecules produced in one or several population of cells and includes the amount or concentration of each RNA molecule in addition to their molecular identities.

Vasopressin:

Vasopressin, also known as arginine vasopressin (AVP), is a neurohypophysial hormone found in most mammals (secreted by the posterior pituitary). Its two primary functions are to retain water in the body and to constrict blood vessels. However, accumulating evidence suggests that it plays an important role in social behavior, sexual motivation and pair bonding, as well as maternal responses to stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, TV., Ducharme, S. & Karama, S. Effects of Sex Steroids in the Human Brain. Mol Neurobiol 54, 7507–7519 (2017). https://doi.org/10.1007/s12035-016-0198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0198-3

Keywords

Navigation