Skip to main content
Log in

Cortical Bilateral Adaptations in Rats Submitted to Focal Cerebral Ischemia: Emphasis on Glial Metabolism

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study was performed to evaluate the bilateral effects of focal permanent ischemia (FPI) on glial metabolism in the cerebral cortex. Two and 9 days after FPI induction, we analyze [18F]FDG metabolism by micro-PET, astrocyte morphology and reactivity by immunohistochemistry, cytokines and trophic factors by ELISA, glutamate transporters by RT-PCR, monocarboxylate transporters (MCTs) by western blot, and substrate uptake and oxidation by ex vivo slices model. The FPI was induced surgically by thermocoagulation of the blood in the pial vessels of the motor and sensorimotor cortices in adult (90 days old) male Wistar rats. Neurochemical analyses were performed separately on both ipsilateral and contralateral cortical hemispheres. In both cortical hemispheres, we observed an increase in tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and glutamate transporter 1 (GLT-1) mRNA levels; lactate oxidation; and glutamate uptake and a decrease in brain-derived neurotrophic factor (BDNF) after 2 days of FPI. Nine days after FPI, we observed an increase in TNF-α levels and a decrease in BDNF, GLT-1, and glutamate aspartate transporter (GLAST) mRNA levels in both hemispheres. Additionally, most of the unilateral alterations were found only in the ipsilateral hemisphere and persisted until 9 days post-FPI. They include diminished in vivo glucose uptake and GLAST expression, followed by increased glial fibrillary acidic protein (GFAP) gray values, astrocyte reactivity, and glutamate oxidation. Astrocytes presented signs of long-lasting reactivity, showing a radial morphology. In the intact hemisphere, there was a decrease in MCT2 levels, which did not persist. Our study shows the bilateralism of glial modifications following FPI, highlighting the role of energy metabolism adaptations on brain recovery post-ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim AS, Johnston SC (2011) Global variation in the relative burden of stroke and ischemic heart disease. Circulation 124(3):314–323. doi:10.1161/circulationaha.111.018820

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES et al (2014) Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation 129(3):399–410. doi:10.1161/01.cir.0000442015.53336.12

    Article  PubMed  Google Scholar 

  3. Dobkin BH (2005) Rehabilitation after Stroke. N Engl J Med 352(16):1677–1684. doi:10.1056/NEJMcp043511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Di Carlo A (2009) Human and economic burden of stroke. Age Ageing 38(1):4–5. doi:10.1093/ageing/afn282

    Article  PubMed  Google Scholar 

  5. Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111(6):483–495. doi:10.1016/j.clineuro.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  6. Dirnagl U, Endres M (2014) Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 45(5):1510–1518. doi:10.1161/STROKEAHA.113.004075

    Article  PubMed  Google Scholar 

  7. Guadagno JV, Calautti C, Baron JC (2003) Progress in imaging stroke: emerging clinical applications. Br Med Bull 65:145–157

    Article  CAS  PubMed  Google Scholar 

  8. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29(1):63–71. doi:10.1002/ana.410290112

    Article  CAS  PubMed  Google Scholar 

  9. Wittenberg GF, Chen R, Ishii K, Bushara KO, Eckloff S, Croarkin E, Taub E, Gerber LH et al (2003) Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 17(1):48–57

    Article  PubMed  Google Scholar 

  10. Takatsuru Y, Nabekura J, Koibuchi N (2014) Contribution of neuronal and glial circuit in intact hemisphere for functional remodeling after focal ischemia. Neurosci Res 78:38–44. doi:10.1016/j.neures.2013.07.004

    Article  PubMed  Google Scholar 

  11. Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke; a journal of cerebral circulation 34(6):1553–1566. doi:10.1161/01.str.0000071761.36075.a6

    Article  Google Scholar 

  12. Bidmon HJ, Jancsik V, Schleicher A, Hagemann G, Witte OW, Woodhams P, Zilles K (1998) Structural alterations and changes in cytoskeletal proteins and proteoglycans after focal cortical ischemia. Neuroscience 82(2):397–420

    Article  CAS  PubMed  Google Scholar 

  13. Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S (2004) Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 1021(1):20–31. doi:10.1016/j.brainres.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  14. Han HS, Yenari MA (2003) Cellular targets of brain inflammation in stroke. Current opinion in investigational drugs (London, England: 2000) 4(5):522–529

    CAS  Google Scholar 

  15. Rossi DJ, Brady JD, Mohr C (2007) Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10(11):1377–1386. doi:10.1038/nn2004

    Article  CAS  PubMed  Google Scholar 

  16. Carmichael ST (2010) Targets for neural repair therapies after stroke. Stroke; a journal of cerebral circulation 41(10 Suppl):S124–S126. doi:10.1161/strokeaha.110.597146

    Article  PubMed Central  Google Scholar 

  17. Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7(4):439–451. doi:10.1016/j.nurt.2010.07.004

    Article  CAS  Google Scholar 

  18. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191. doi:10.3389/fendo.2013.00191

    Article  Google Scholar 

  19. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66(1):386–393

    Article  CAS  PubMed  Google Scholar 

  20. Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4(2):193–205

    Article  CAS  PubMed  Google Scholar 

  21. Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res 744(1):105–111

    Article  CAS  PubMed  Google Scholar 

  22. Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L (2009) Neuroprotective role of lactate after cerebral ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 29(11):1780–1789. doi:10.1038/jcbfm.2009.97

    Article  CAS  Google Scholar 

  23. Castillo X, Rosafio K, Wyss MT, Drandarov K, Buck A, Pellerin L, Weber B, Hirt L (2015) A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 35(10):1561–1569. doi:10.1038/jcbfm.2015.115

    Article  CAS  Google Scholar 

  24. Schurr A, Payne RS, Miller JJ, Tseng MT, Rigor BM (2001) Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia. Brain Res 895(1–2):268–272

    Article  CAS  PubMed  Google Scholar 

  25. Berthet C, Castillo X, Magistretti PJ, Hirt L (2012) New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovascular diseases (Basel, Switzerland) 34(5–6):329–335. doi:10.1159/000343657

    Article  CAS  Google Scholar 

  26. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94(1):1–14. doi:10.1111/j.1471-4159.2005.03168.x

    Article  CAS  PubMed  Google Scholar 

  27. Pierre K, Pellerin L, Debernardi R, Riederer BM, Magistretti PJ (2000) Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100(3):617–627

    Article  CAS  PubMed  Google Scholar 

  28. Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 122(3):677–688

    Article  CAS  PubMed  Google Scholar 

  29. Pellerin L, Bergersen LH, Halestrap AP, Pierre K (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 79(1–2):55–64. doi:10.1002/jnr.20307

    Article  CAS  PubMed  Google Scholar 

  30. Rosafio K, Pellerin L (2014) Oxygen tension controls the expression of the monocarboxylate transporter MCT4 in cultured mouse cortical astrocytes via a hypoxia-inducible factor-1alpha-mediated transcriptional regulation. Glia 62(3):477–490. doi:10.1002/glia.22618

    Article  PubMed  Google Scholar 

  31. Rosafio K, Castillo X, Hirt L, Pellerin L (2016) Cell-specific modulation of monocarboxylate transporter expression contributes to the metabolic reprograming taking place following cerebral ischemia. Neuroscience 317:108–120. doi:10.1016/j.neuroscience.2015.12.052

    Article  CAS  PubMed  Google Scholar 

  32. Yu M, Xue Y, Liang W, Zhang Y, Zhang Z (2015) Protection mechanism of early hyperbaric oxygen therapy in rats with permanent cerebral ischemia. J Phys Ther Sci 27(10):3271–3274. doi:10.1589/jpts.27.3271

    Article  PubMed  PubMed Central  Google Scholar 

  33. Szele FG, Alexander C, Chesselet MF (1995) Expression of molecules associated with neuronal plasticity in the striatum after aspiration and thermocoagulatory lesions of the cerebral cortex in adult rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 15(6):4429–4448

    CAS  Google Scholar 

  34. Giraldi-Guimardes A, Rezende-Lima M, Bruno FP, Mendez-Otero R (2009) Treatment with bone marrow mononuclear cells induces functional recovery and decreases neurodegeneration after sensorimotor cortical ischemia in rats. Brain Res 1266:108–120. doi:10.1016/j.brainres.2009.01.062

    Article  PubMed  Google Scholar 

  35. Hansel G, Ramos DB, Delgado CA, Souza DG, Almeida RF, Portela LV, Quincozes-Santos A, Souza DO (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS One 9(2):e90693. doi:10.1371/journal.pone.0090693

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hansel G, Tonon AC, Guella FL, Pettenuzzo LF, Duarte T, Duarte MM, Oses JP, Achaval M et al (2015) Guanosine protects against cortical focal ischemia. Involvement of inflammatory response. Mol Neurobiol 52(3):1791–1803. doi:10.1007/s12035-014-8978-0

    Article  CAS  PubMed  Google Scholar 

  37. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Sydney

    Google Scholar 

  38. de Vasconcelos Dos Santos A, da Costa RJ, Diaz Paredes B, Moraes L, Jasmin G-GA, Mendez-Otero R (2010) Therapeutic window for treatment of cortical ischemia with bone marrow-derived cells in rats. Brain Res 1306:149–158. doi:10.1016/j.brainres.2009.09.094

    Article  PubMed  Google Scholar 

  39. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 10(2):290–293. doi:10.1038/jcbfm.1990.47

    Article  CAS  Google Scholar 

  40. Liu S, Zhen G, Meloni BP, Campbell K, Winn HR (2009) Rodent stroke model Guidelines for preclinical stroke Trials (1ST Edition). Journal of experimental stroke & translational medicine 2(2):2–27

    Article  Google Scholar 

  41. Wyckhuys T, Wyffels L, Langlois X, Schmidt M, Stroobants S, Staelens S (2014) The [18F]FDG muPET readout of a brain activation model to evaluate the metabotropic glutamate receptor 2 positive allosteric modulator JNJ-42153605. J Pharmacol Exp Ther 350(2):375–386. doi:10.1124/jpet.114.213959

    Article  PubMed  Google Scholar 

  42. Baptista PP, Saur L, Bagatini PB, Greggio S, Venturin GT, Vaz SP, Ferreira Kdos R, Junqueira JS et al (2015) Antidepressant effects of ketamine are not related to (1)(8)F-FDG metabolism or tyrosine hydroxylase immunoreactivity in the ventral tegmental area of Wistar rats. Neurochem Res 40(6):1153–1164. doi:10.1007/s11064-015-1576-3

    Article  CAS  PubMed  Google Scholar 

  43. Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL (2006) Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods 155(2):272–284. doi:10.1016/j.jneumeth.2006.01.027

    Article  CAS  PubMed  Google Scholar 

  44. Zimmer ER, Parent MJ, Leuzy A, Aliaga A, Aliaga A, Moquin L, Schirrmacher ES, Soucy JP et al (2015) Imaging in vivo glutamate fluctuations with [(11)C]ABP688: a GLT-1 challenge with ceftriaxone. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 35(7):1169–1174. doi:10.1038/jcbfm.2015.35

    Article  CAS  Google Scholar 

  45. Thomazi AP, Godinho GF, Rodrigues JM, Schwalm FD, Frizzo ME, Moriguchi E, Souza DO, Wofchuk ST (2004) Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine. Mech Ageing Dev 125(7):475–481. doi:10.1016/j.mad.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  46. Ferreira GC, Tonin A, Schuck PF, Viegas CM, Ceolato PC, Latini A, Perry ML, Wyse AT et al (2007) Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism. Int J Dev Neurosci 25(6):391–398. doi:10.1016/j.ijdevneu.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  47. Muller AP, Longoni A, Farina M, da Silveira CK, Souza DO, Perry ML, de Assis AM (2013) Propylthiouracil-induced hypothyroidism during lactation alters leucine and mannose metabolism in rat cerebellar slices. Experimental biology and medicine (Maywood, NJ) 238(1):31–36. doi:10.1258/ebm.2012.012255

    Article  CAS  Google Scholar 

  48. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  49. Mestriner RG, Saur L, Bagatini PB, Baptista PP, Vaz SP, Ferreira K, Machado SA, Xavier LL et al (2015) Astrocyte morphology after ischemic and hemorrhagic experimental stroke has no influence on the different recovery patterns. Behav Brain Res 278:257–261. doi:10.1016/j.bbr.2014.10.005

    Article  PubMed  Google Scholar 

  50. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(Pt 4):387–406.381

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Viola GG, Rodrigues L, Americo JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Goncalves CA et al (2009) Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 1274:47–54. doi:10.1016/j.brainres.2009.04.007

    Article  CAS  PubMed  Google Scholar 

  52. Cheadle C, Cho-Chung YS, Becker KG, Vawter MP (2003) Application of z-score transformation to Affymetrix data. Appl Bioinforma 2(4):209–217

    CAS  Google Scholar 

  53. Kunz A, Dirnagl U, Mergenthaler P (2010) Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol 24(4):495–509. doi:10.1016/j.bpa.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  54. Carmichael ST (2015) The 3 Rs of stroke biology: radial, relayed, and regenerative. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. doi:10.1007/s13311-015-0408-0

    Google Scholar 

  55. Tanaka H, Katoh A, Oguro K, Shimazaki K, Gomi H, Itohara S, Masuzawa T, Kawai N (2002) Disturbance of hippocampal long-term potentiation after transient ischemia in GFAP deficient mice. J Neurosci Res 67(1):11–20

    Article  CAS  PubMed  Google Scholar 

  56. Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. doi:10.1016/j.pneurobio.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  57. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Stahlberg A et al (2008) Protective role of reactive astrocytes in brain ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 28(3):468–481. doi:10.1038/sj.jcbfm.9600546

    Article  Google Scholar 

  58. de Pablo Y, Nilsson M, Pekna M, Pekny M (2013) Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem Cell Biol 140(1):81–91. doi:10.1007/s00418-013-1110-0

    Article  PubMed  Google Scholar 

  59. Muir KW, Tyrrell P, Sattar N, Warburton E (2007) Inflammation and ischaemic stroke. Curr Opin Neurol 20(3):334–342. doi:10.1097/WCO.0b013e32813ba151

    Article  CAS  PubMed  Google Scholar 

  60. Ansar S, Edvinsson L (2008) Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage. Stroke; a journal of cerebral circulation:39. doi:10.1161/STROKEAHA.107.487827

  61. Figiel I (2008) Pro-inflammatory cytokine TNF-alpha as a neuroprotective agent in the brain. Acta Neurobiol Exp 68(4):526–534

    Google Scholar 

  62. Kiprianova I, Freiman TM, Desiderato S, Schwab S, Galmbacher R, Gillardon F, Spranger M (1999) Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat. J Neurosci Res 56(1):21–27

    Article  CAS  PubMed  Google Scholar 

  63. Jiang Y, Wei N, Zhu J, Lu T, Chen Z, Xu G, Liu X (2010) Effects of brain-derived neurotrophic factor on local inflammation in experimental stroke of rat. Mediat Inflamm 2010:10. doi:10.1155/2010/372423

    Google Scholar 

  64. Chen A, Xiong LJ, Tong Y, Mao M (2013) The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomedical reports 1(2):167–176. doi:10.3892/br.2012.48

    Article  CAS  PubMed  Google Scholar 

  65. Halestrap AP (2013) The SLC16 gene family - structure, role and regulation in health and disease. Mol Asp Med 34(2–3):337–349. doi:10.1016/j.mam.2012.05.003

    Article  CAS  Google Scholar 

  66. Robinet C, Pellerin L (2011) Brain-derived neurotrophic factor enhances the hippocampal expression of key postsynaptic proteins in vivo including the monocarboxylate transporter MCT2. Neuroscience 192:155–163. doi:10.1016/j.neuroscience.2011.06.059

    Article  CAS  PubMed  Google Scholar 

  67. Robinet C, Pellerin L (2010) Brain-derived neurotrophic factor enhances the expression of the monocarboxylate transporter 2 through translational activation in mouse cultured cortical neurons. J Cereb Blood Flow Metab 30(2):286–298. doi:10.1038/jcbfm.2009.208

    Article  CAS  PubMed  Google Scholar 

  68. Singh N, Sharma G, Mishra V (2012) Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 32(4):491–507. doi:10.1007/s10571-012-9803-9

    Article  CAS  PubMed  Google Scholar 

  69. Bergersen LH (2015) Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 35(2):176–185. doi:10.1038/jcbfm.2014.206

    Article  CAS  Google Scholar 

  70. Wiener CM, Booth G, Semenza GL (1996) In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem Biophys Res Commun 225(2):485–488. doi:10.1006/bbrc.1996.1199

    Article  CAS  PubMed  Google Scholar 

  71. Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11(12):4159–4170

    Article  CAS  PubMed  Google Scholar 

  72. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  73. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85(15):3347–3358. doi:10.1002/jnr.21444

    Article  CAS  PubMed  Google Scholar 

  74. Kreft M, Bak LK, Waagepetersen HS, Schousboe A (2012) Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN neuro 4(3). doi:10.1042/an20120007

  75. Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32(1):1–14

    Article  CAS  PubMed  Google Scholar 

  76. Rothstein JD, Tabakoff B (1985) Glial and neuronal glutamate transport following glutamine synthetase inhibition. Biochem Pharmacol 34(1):73–79

    Article  CAS  PubMed  Google Scholar 

  77. Swanson RA, Graham SH (1994) Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res 664(1–2):94–100

    Article  CAS  PubMed  Google Scholar 

  78. Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69(6):2612–2615

    Article  CAS  PubMed  Google Scholar 

  79. Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 17(3):932–940

    CAS  Google Scholar 

  80. Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+−dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53(3):355–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Without Borders Program (88881.030387/2013-1), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) e Instituto Nacional de Ciência e Tecnologia para Excitotoxicidade e Neuroproteção (573577/2008-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano M. de Assis.

Ethics declarations

All animal experiments were performed in accordance with the National Institutes of Health “Guide for the Care and Use of Laboratory Animals” (NIH publication no. 80-23, revised 1996) and were approved by the Federal University of Rio Grande do Sul Animal Care and Use Committee (process number 26674).

Electronic supplementary material

Supplementary Fig. 1

All brain regions analyzed assessed by microPET. (A) Hippocampus. (B) Amygdala. (C) Caudate Putamen. (D) Olfatory. (E) Tallamus. (F) Hypothalamus. (G) Superior Colliculus. (H) Inferior Colliculus. (I) Midbrain. (J) Ventral Tegmental Area. (K) CB Gray. (L) CB White. The results are expressed in SUV values of [18F]FDG uptake and all data are expressed as the means + S.E.M * represents P < 0.05 (one-way ANOVA). (n = 6 per group). (PDF 695 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonose, Y., Gewehr, P.E., Almeida, R.F. et al. Cortical Bilateral Adaptations in Rats Submitted to Focal Cerebral Ischemia: Emphasis on Glial Metabolism. Mol Neurobiol 55, 2025–2041 (2018). https://doi.org/10.1007/s12035-017-0458-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0458-x

Keywords

Navigation