Skip to main content

Advertisement

Log in

Angiotensin II Causes Neuronal Damage in Stretch-Injured Neurons: Protective Effects of Losartan, an Angiotensin T1 Receptor Blocker

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Angiotensin II (Ang II) is a mediator of oxidative stress via activation/induction of reactive oxygen and nitrogen species-generating enzymes, NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS). We investigated the hypothesis that overproduction of Ang II during traumatic brain injury (TBI) induces the activation of the oxidative stress, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury. We first established that stretch injury causes a rapid increase in the level of Ang II, which causes the release of pro-inflammatory cytokines, IL-1β and TNF-α, via the induction of oxidative stress. Since angiotensin-converting enzyme (ACE) mediates the production of Ang II via the conversion of Ang I into Ang II, we analyzed the expression of ACE by western blotting. Further, we analyzed caspase-3-mediated apoptosis by TUNEL staining and annexin V western blotting. Angiotensin type I (AT1) receptor antagonist losartan attenuated Ang II-induced oxidative stress and associated neuroinflammation and cell death in cultured neurons. Remarkably, we noticed that the expression of Ang II type 1 receptor (AngT1R) upregulated in neuronal stretch injury; losartan mitigates this upregulation. Findings from this study significantly extend our understanding of the pathophysiology of TBI and may have significant implications for developing therapeutic strategies for TBI-associated brain dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta

    Book  Google Scholar 

  2. Beauchamp K, Mutlak H, Smith WR, Shohami E, Stahel PF (2008) Pharmacology of traumatic brain injury: where is the “golden bullet”? Mol Med 14:731–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lotocki G, de Rivero Vaccari JP, Perez ER, Sanchez-Molano J, Furones-Alonso O, Bramlett HM, Dietrich WD (2009) Alterations in blood-brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma 26:1123–1134

    Article  PubMed  PubMed Central  Google Scholar 

  4. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  5. Abdul-Muneer PM, Chandra N, Haorah J (2015) Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 51:966–979

    Article  PubMed  CAS  Google Scholar 

  6. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE (1999) Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 14:602–615

    Article  PubMed  CAS  Google Scholar 

  7. Abdul-Muneer PM, Conte AA, Haldar D, Long M, Patel RK, Santhakumar V, Overall CM, Pfister BJ (2017) Traumatic brain injury induced matrix metalloproteinase2 cleaves CXCL12alpha (stromal cell derived factor 1alpha) and causes neurodegeneration. Brain Behav Immun 59:190–199

    Article  PubMed  CAS  Google Scholar 

  8. Abdul-Muneer PM, Long M, Conte AA, Santhakumar V, Pfister BJ (2017) High Ca2+ influx during traumatic brain injury leads to caspase-1-dependent neuroinflammation and cell death. Mol Neurobiol 54:3964–3975

    Article  PubMed  CAS  Google Scholar 

  9. Abdul-Muneer PM, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, Zimmerman MC, Chandra N et al (2013) Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 60:282–291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Patel RK, Prasad N, Kuwar R, Haldar D, Abdul-Muneer PM (2017) Transforming growth factor-beta 1 signaling regulates neuroinflammation and apoptosis in mild traumatic brain injury. Brain Behav Immun 64:244–258

    Article  PubMed  CAS  Google Scholar 

  11. Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N (2016) Role of matrix metalloproteinases in the pathogenesis of traumatic brain injury. Mol Neurobiol 53:6106–6123

    Article  PubMed  CAS  Google Scholar 

  12. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O et al (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci U S A 103:17985–17990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fyhrquist F, Metsarinne K, Tikkanen I (1995) Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J Hum Hypertens 9(Suppl 5):S19–S24

    PubMed  Google Scholar 

  14. Basso N, Terragno NA (2001) History about the discovery of the renin-angiotensin system. Hypertension 38:1246–1249

    Article  PubMed  CAS  Google Scholar 

  15. Matsumoto E, Sasaki S, Kinoshita H, Kito T, Ohta H, Konishi M, Kuwahara K, Nakao K et al (2013) Angiotensin II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf16. Genes Cells 18:544–553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xu J, Carretero OA, Liao TD, Peng H, Shesely EG, Xu J, Liu TS, Yang JJ et al (2010) Local angiotensin II aggravates cardiac remodeling in hypertension. Am J Physiol Heart Circ Physiol 299:H1328–H1338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hirooka Y, Kimura Y, Nozoe M, Sagara Y, Ito K, Sunagawa K (2006) Amlodipine-induced reduction of oxidative stress in the brain is associated with sympatho-inhibitory effects in stroke-prone spontaneously hypertensive rats. Hypertens Res 29:49–56

    Article  PubMed  CAS  Google Scholar 

  18. Ito H, Takemori K, Suzuki T (2001) Role of angiotensin II type 1 receptor in the leucocytes and endothelial cells of brain microvessels in the pathogenesis of hypertensive cerebral injury. J Hypertens 19:591–597

    Article  PubMed  CAS  Google Scholar 

  19. Landmesser U, Cai H, Dikalov S, McCann L, Hwang J, Jo H, Holland SM, Harrison DG (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40:511–515

    Article  PubMed  CAS  Google Scholar 

  20. Rueckschloss U, Quinn MT, Holtz J, Morawietz H (2002) Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 22:1845–1851

    Article  PubMed  CAS  Google Scholar 

  21. Landmesser U, Spiekermann S, Preuss C, Sorrentino S, Fischer D, Manes C, Mueller M, Drexler H (2007) Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol 27:943–948

    Article  PubMed  CAS  Google Scholar 

  22. El Bekay R, Alvarez M, Monteseirin J, Alba G, Chacon P, Vega A, Martin-Nieto J, Jimenez J et al (2003) Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-kappaB. Blood 102:662–671

    Article  PubMed  CAS  Google Scholar 

  23. Oudit GY, Kassiri Z, Patel MP, Chappell M, Butany J, Backx PH, Tsushima RG, Scholey JW et al (2007) Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res 75:29–39

    Article  PubMed  CAS  Google Scholar 

  24. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    Article  PubMed  CAS  Google Scholar 

  25. Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, Cohen RA (2001) Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 88:947–953

    Article  PubMed  CAS  Google Scholar 

  26. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, Li H, Bodenschatz M et al (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res 90:E58–E65

    Article  PubMed  Google Scholar 

  28. Burnier M, Brunner HR (2000) Angiotensin II receptor antagonists. Lancet 355:637–645

    Article  PubMed  CAS  Google Scholar 

  29. Benicky J, Sanchez-Lemus E, Honda M, Pang T, Orecna M, Wang J, Leng Y, Chuang DM et al (2011) Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 36:857–870

    Article  PubMed  CAS  Google Scholar 

  30. Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2:247–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Villapol S, Balarezo MG, Affram K, Saavedra JM, Symes AJ (2015) Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain 138:3299–3315

    Article  PubMed  PubMed Central  Google Scholar 

  32. Villapol S, Yaszemski AK, Logan TT, Sanchez-Lemus E, Saavedra JM, Symes AJ (2012) Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology 37:2817–2829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sadoshima J (2002) Novel AT(1) receptor-independent functions of losartan. Circ Res 90:754–756

    Article  PubMed  CAS  Google Scholar 

  34. Siegl PK, Kivlighn SD, Broten TP (1995) Pharmacology of losartan, an angiotensin II receptor antagonist, in animal models of hypertension. J Hypertens Suppl 13:S15–S21

    Article  PubMed  CAS  Google Scholar 

  35. Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P, Lecrux C, Imboden H et al (2014) Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis 68:126–136

    Article  PubMed  CAS  Google Scholar 

  36. Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY et al (2014) Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol 75:864–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Geddes-Klein DM, Schiffman KB, Meaney DF (2006) Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J Neurotrauma 23:193–204

    Article  PubMed  Google Scholar 

  38. Salvador E, Neuhaus W, Foerster C (2013) Stretch in brain microvascular endothelial cells (cEND) as an in vitro traumatic brain injury model of the blood brain barrier. J Vis Exp. https://doi.org/10.3791/50928:e50928.

  39. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  40. Zhang K, McQuibban GA, Silva C, Butler GS, Johnston JB, Holden J, Clark-Lewis I, Overall CM et al (2003) HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nat Neurosci 6:1064–1071

    Article  PubMed  CAS  Google Scholar 

  41. Lin YJ, Kwok CF, Juan CC, Hsu YP, Shih KC, Chen CC, Ho LT (2014) Angiotensin II enhances endothelin-1-induced vasoconstriction through upregulating endothelin type A receptor. Biochem Biophys Res Commun 451:263–269

    Article  PubMed  CAS  Google Scholar 

  42. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, Harrison DG, Dikalova AE (2014) Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal 20:281–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Chen J, Chen W, Zhu M, Zhu Y, Xu P, Miao C (2015) Angiotensin II-induced mouse hippocampal neuronal HT22 cell apoptosis was inhibited by propofol: role of neuronal nitric oxide synthase and metallothinonein-3. Neuroscience 305:117–127

    Article  PubMed  CAS  Google Scholar 

  44. Marques-Lopes J, Lynch MK, Van Kempen TA, Waters EM, Wang G, Iadecola C, Pickel VM, Milner TA (2015) Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse 69:148–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Guo DF, Sun YL, Hamet P, Inagami T (2001) The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res 11:165–180

    Article  PubMed  CAS  Google Scholar 

  46. Xu Y, Krukoff TL (2007) Adrenomedullin stimulates nitric oxide production from primary rat hypothalamic neurons: roles of calcium and phosphatases. Mol Pharmacol 72:112–120

    Article  PubMed  CAS  Google Scholar 

  47. Kalra D, Sivasubramanian N, Mann DL (2002) Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C-dependent pathway. Circulation 105:2198–2205

    Article  PubMed  CAS  Google Scholar 

  48. Guo F, Chen XL, Wang F, Liang X, Sun YX, Wang YJ (2011) Role of angiotensin II type 1 receptor in angiotensin II-induced cytokine production in macrophages. J Interf Cytokine Res 31:351–361

    Article  CAS  Google Scholar 

  49. Sauter NS, Thienel C, Plutino Y, Kampe K, Dror E, Traub S, Timper K, Bedat B et al (2015) Angiotensin II induces interleukin-1beta-mediated islet inflammation and beta-cell dysfunction independently of vasoconstrictive effects. Diabetes 64:1273–1283

    Article  PubMed  CAS  Google Scholar 

  50. Ellis EF, McKinney JS, Willoughby KA, Liang S, Povlishock JT (1995) A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma 12:325–339

    Article  PubMed  CAS  Google Scholar 

  51. Kumaria A, Tolias CM (2008) In vitro models of neurotrauma. Br J Neurosurg 22:200–206

    Article  PubMed  CAS  Google Scholar 

  52. Kario K, Matsuo T, Kobayashi H, Kanai N, Hoshide S, Mitsuhashi T, Ikeda U, Nishiuma S et al (1998) Endothelial cell damage and angiotensin-converting enzyme insertion/deletion genotype in elderly hypertensive patients. J Am Coll Cardiol 32:444–450

    Article  PubMed  CAS  Google Scholar 

  53. Orfanos SE, Langleben D, Khoury J, Schlesinger RD, Dragatakis L, Roussos C, Ryan JW, Catravas JD (1999) Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in humans. Circulation 99:1593–1599

    Article  PubMed  CAS  Google Scholar 

  54. Xiao L, Haack KK, Zucker IH (2013) Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol 304:C1073–C1079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mitra AK, Gao L, Zucker IH (2010) Angiotensin II-induced upregulation of AT(1) receptor expression: sequential activation of NF-kappaB and Elk-1 in neurons. Am J Physiol Cell Physiol 299:C561–C569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kim-Mitsuyama S, Yamamoto E, Tanaka T, Zhan Y, Izumi Y, Izumiya Y, Ioroi T, Wanibuchi H et al (2005) Critical role of angiotensin II in excess salt-induced brain oxidative stress of stroke-prone spontaneously hypertensive rats. Stroke 36:1083–1088

    Article  PubMed  CAS  Google Scholar 

  57. Fleegal-DeMotta MA, Doghu S, Banks WA (2009) Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab 29:640–647

    Article  PubMed  CAS  Google Scholar 

  58. Zhang M, Mao Y, Ramirez SH, Tuma RF, Chabrashvili T (2010) Angiotensin II induced cerebral microvascular inflammation and increased blood-brain barrier permeability via oxidative stress. Neuroscience 171:852–858

    Article  PubMed  CAS  Google Scholar 

  59. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  PubMed  CAS  Google Scholar 

  61. Hans VH, Kossmann T, Joller H, Otto V, Morganti-Kossmann MC (1999) Interleukin-6 and its soluble receptor in serum and cerebrospinal fluid after cerebral trauma. Neuroreport 10:409–412

    Article  PubMed  CAS  Google Scholar 

  62. Shohami E, Bass R, Wallach D, Yamin A, Gallily R (1996) Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 16:378–384

    Article  PubMed  CAS  Google Scholar 

  63. Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15:8223–8233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Sriramula S, Francis J (2015) Tumor necrosis factor-alpha is essential for angiotensin II-induced ventricular remodeling: role for oxidative stress. PLoS One 10:e0138372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Xu S, Zhi H, Hou X, Jiang B (2011) Angiotensin II modulates interleukin-1beta-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-kappaB crosstalk. Biochem Biophys Res Commun 410:543–548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ha Y, Jeong JA, Kim Y, Churchill DG (2016) Sodium and potassium relating to Parkinson’s disease and traumatic brain injury. Met Ions Life Sci 16:585–601

    Article  PubMed  CAS  Google Scholar 

  67. Timaru-Kast R, Wyschkon S, Luh C, Schaible EV, Lehmann F, Merk P, Werner C, Engelhard K et al (2012) Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma. Crit Care Med 40:935–944

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by the Neuroscience Institute at JFK Medical Center, Edison, NJ to P.M. Abdul-Muneer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Abdul-Muneer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul-Muneer, P.M., Bhowmick, S. & Briski, N. Angiotensin II Causes Neuronal Damage in Stretch-Injured Neurons: Protective Effects of Losartan, an Angiotensin T1 Receptor Blocker. Mol Neurobiol 55, 5901–5912 (2018). https://doi.org/10.1007/s12035-017-0812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0812-z

Keywords

Navigation