Skip to main content

Advertisement

Log in

Gedunin Inhibits Oligomeric Aβ1–42-Induced Microglia Activation Via Modulation of Nrf2-NF-κB Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder and the leading cause of dementia in aged populations worldwide. The deposition of toxic protein aggregates such as amyloid beta (Aβ) is a hallmark of AD, and there is growing awareness that a key driver of AD pathogenesis is the neuroinflammatory cascade triggered and sustained by these proteins. Consequently, interventions that suppress prolonged neuroinflammation represent viable therapeutic approaches for AD. In this context, we tested the natural product gedunin which is an anti-inflammatory molecule, found in the seeds of the neem tree (Azadirachta indica), whose mechanism of action remains to be fully elucidated. Using a mouse microglia cell line (IMG), we show that gedunin suppresses neuroinflammation arising from Aβ1–42 oligomer exposure. Our results demonstrate that gedunin suppresses Aβ1–42-induced NF-κB activation and its targets, including nitric oxide (NO) and IL-1β, known proinflammatory molecules. Further, we show that gedunin inhibits neuroinflammation by activating nuclear factor 2 erythroid–related factor 2 (Nrf2) and its downstream targets γ-glutamylcysteine synthetase, heme oxygenase 1, and NADPH quinone dehydrogenase 1, which are involved in quenching reactive oxygen and nitrogen species (NO) generated by NF-κB activation. Nrf2 activation appears essential for the anti-inflammatory effect because when silenced, the proinflammatory effects of Aβ1–42 are enhanced and the protective effect of gedunin against NO production is reduced. Additionally, using human neuronal cells (SH-SY5Y), we show that gedunin prevents neurotoxicity secondary to Aβ-induced microglial activation. In conclusion, our findings highlight a potential therapeutic role of gedunin in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alzheimer’s Association (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332–384

    Article  Google Scholar 

  2. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    Article  Google Scholar 

  3. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472

    Article  CAS  Google Scholar 

  4. Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018) Bidirectional microglia–neuron communication in health and disease. Front Cell Neurosci 12:323

    Article  CAS  Google Scholar 

  5. Regen F, Hellmann-Regen J, Costantini E, Reale M (2017) Neuroinflammation and Alzheimer’s disease: implications for microglial activation. Curr Alzheimer Res 14(11):1140–1148

    Article  Google Scholar 

  6. Harirforoosh S, Asghar W, Jamali F (2013) Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci 16(5):821–847

    Article  Google Scholar 

  7. Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010) Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta 1799(10–12):775–787

    Article  CAS  Google Scholar 

  8. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  Google Scholar 

  9. Karimi A, Majlesi M, Rafieian-Kopaei M (2015) Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 4(1):27–30 eCollection 2015

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Alzohairy MA (2016) Therapeutics role of Azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid Based Complement Alternat Med 2016:7382506

    Article  Google Scholar 

  11. Henriques MD, Penido C (2014) The therapeutic properties of Carapa guianensis. Curr Pharm Des 20(6):850–856

    Article  Google Scholar 

  12. Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K et al (2015) Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 99:448–458

    Article  CAS  Google Scholar 

  13. Borges PV, Moret KH, Raghavendra NM, Maramaldo Costa TE, Monteiro AP, Carneiro AB, Pacheco P, Temerozo JR et al (2017) Protective effect of gedunin on TLR-mediated inflammation by modulation of inflammasome activation and cytokine production: evidence of a multitarget compound. Pharmacol Res 115:65–77

    Article  CAS  Google Scholar 

  14. Smirnova NA, Haskew-Layton RE, Basso M, Hushpulian DM, Payappilly JB, Speer RE, Ahn YH, Rakhman I et al (2011) Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators. Chem Biol 18(6):752–765

    Article  CAS  Google Scholar 

  15. Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  Google Scholar 

  16. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between NF-kB response pathways. Biochem Soc Trans 43(4):621–625

    Article  CAS  Google Scholar 

  17. Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22(6):885–893

    Article  CAS  Google Scholar 

  18. McCarthy RC, Lu DY, Alkhateeb A, Gardeck AM, Lee CH, Wessling-Resnick M (2016) Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta. J Neuroinflammation 13:21

    Article  Google Scholar 

  19. Ferrari A, Hoerndli F, Baechi T, Nitsch RM, Götz J (2003) Beta-amyloid induces paired helical filament-like tau filaments in tissue culture. J Biol Chem 278(41):40162–40168

    Article  CAS  Google Scholar 

  20. Leonoudakis D, Rane A, Angeli S, Lithgow GJ, Andersen JK, Chinta SJ (2017) Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells: implications for Parkinson’s disease. Mediat Inflamm 2017:8302636

    Article  Google Scholar 

  21. Wan F, Lenardo MJ (2010) The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res 20(1):24–33

    Article  CAS  Google Scholar 

  22. Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77

    Article  Google Scholar 

  23. Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG, Ferrario M, Borsani G et al (2006) NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 23(7):1711–1720

    Article  Google Scholar 

  24. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75(6):639–653

    Article  CAS  Google Scholar 

  25. Forlenza OV, Diniz BS, Talib LL, Mendonça VA, Ojopi EB, Gattaz WF, Teixeira AL (2009) Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord 28(6):507–512

    Article  CAS  Google Scholar 

  26. Mehlhorn G, Hollborn M, Schliebs R (2000) Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 18(4–5):423–431

    Article  CAS  Google Scholar 

  27. Yerra VG, Negi G, Sharma SS, Kumar A (2013) Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-kappaB pathways in diabetic neuropathy. Redox Biol 1:394–397

    Article  Google Scholar 

  28. Vargas MR, Johnson JA (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17

    Article  Google Scholar 

  29. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295

    Article  CAS  Google Scholar 

  30. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T et al (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7:11624

    Article  CAS  Google Scholar 

  31. An YW, Jhang KA, Woo SY, Kang JL, Chong YH (2016) Sulforaphane exerts its anti-inflammatory effect against amyloid-beta peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol Aging 38:1–10

    Article  CAS  Google Scholar 

  32. de Oliveira MR, de Souza ICC, Furstenau CR (2018) Carnosic acid induces anti-inflammatory effects in paraquat-treated SH-SY5Y cells through a mechanism involving a crosstalk between the Nrf2/HO-1 axis and NF-kappaB. Mol Neurobiol 55(1):890–897

    Article  Google Scholar 

  33. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol basis Dis 1863(2):585–597

    Article  CAS  Google Scholar 

  34. Rushworth SA, Shah S, MacEwan DJ (2011) TNF mediates the sustained activation of Nrf2 in human monocytes. J Immunol 187(2):702–707

    Article  CAS  Google Scholar 

  35. Tseng JH, Xie L, Song S, Xie Y, Allen L, Ajit D, Hong JS, Chen X et al (2017) The deacetylase HDAC6 mediates endogenous neuritic tau pathology. Cell Rep 20(9):2169–2183

    Article  CAS  Google Scholar 

  36. Eckert A, Marques CA, Keil U, Schüssel K, Müller WE (2003) Increased apoptotic cell death in sporadic and genetic Alzheimer’s disease. Ann N Y Acad Sci 1010:604–609

    Article  CAS  Google Scholar 

  37. Calissano P, Matrone C, Amadoro G (2009) Apoptosis and in vitro Alzheimer disease neuronal models. Commun Integr Biol 2(2):163–169

    Article  CAS  Google Scholar 

  38. Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, Dickinson B, Scullion S et al (2011) Aβ(1- 42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1, and GSK-3β. Nat Neurosci 14(5):545–547

    Article  CAS  Google Scholar 

  39. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. https://doi.org/10.3389/fncel.2014.00112

  40. Casey DA, Antimisiaris D, O'Brien J (2010) Drugs for Alzheimer’s disease: are they effective? P T 35(4):208–211

    PubMed  PubMed Central  Google Scholar 

  41. Shal B, Ding W, Ali H, Kim YS, Khan S, Shal B, Ding W, Ali H et al (2018) Anti neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front Pharmacol 29(9):548 eCollection 2018

    Article  Google Scholar 

Download references

Funding

This work was supported by the Touro University California College of Pharmacy Master of Science in Medical Health Sciences program. MC is supported by a postdoctoral fellowship from the Larry L. Hillblom Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar J. Chinta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tom, S., Rane, A., Katewa, A.S. et al. Gedunin Inhibits Oligomeric Aβ1–42-Induced Microglia Activation Via Modulation of Nrf2-NF-κB Signaling. Mol Neurobiol 56, 7851–7862 (2019). https://doi.org/10.1007/s12035-019-1636-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1636-9

Keywords

Navigation