Skip to main content
Log in

Protein Kinase C-Gamma Knockout Mice Show Impaired Hippocampal Short-Term Memory While Preserved Long-Term Memory

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The brain encodes, stores, and retrieves relevant information in the form of memories that are classified as short-term (STM) and long-term memories (LTM) depending on the interval between acquisition and retrieval. It is classically accepted that STM undergo a consolidation process to form LTM, but the molecular determinants involved are not well understood. Among the molecular components relevant for memory formation, we focused our attention on the protein kinase C (PKC) family of enzymes since they control key aspects of the synaptic plasticity and memory. Within the different PKC isoforms, PKC-gamma has been specifically associated with learning and memory since mice lacking this isoform (PKC-gamma KO mice) showed mild cognitive impairment and deficits in hippocampal synaptic plasticity. We now reveal that PKC-gamma KO mice present a severe impairment in hippocampal-dependent STM using different memory tests including the novel object-recognition and novel place-recognition, context fear conditioning and trace fear conditioning. In contrast, no differences between genotypes were observed in an amygdala-dependent test, the delay fear conditioning. Strikingly, all LTM tasks that could be assessed 24 h after acquisition were not perturbed in the KO mice. The analysis of c-Fos expression in several brain areas after trace fear conditioning acquisition showed a blunted response in the dentate gyrus of PKC-gamma KO mice compared with WT mice, but such differences between genotypes were absent when the amygdala or the prefrontal cortex were examined. In the hippocampus, PKC-gamma was found to translocate to the membrane after auditory trace, but not after delay fear conditioning. Together, these results indicate that PKC-gamma dysfunction affects specifically hippocampal-dependent STM performance and disclose PKC-gamma as a molecular player differentially involved in STM and LTM processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abel T, Lattal KM (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 11:180–187. https://doi.org/10.1016/S0959-4388(00)00194-X

    Article  CAS  PubMed  Google Scholar 

  2. Cowan N (2009) What are the differences between long-term, short-term, and working memory? Prog Brain Res 6123:323–338. https://doi.org/10.1016/S0079-6123(07)00020-9

    Article  Google Scholar 

  3. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419–457. https://doi.org/10.1037/0033-295X.102.3.419

    Article  PubMed  Google Scholar 

  4. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RGM (2007) Schemas and memory consolidation. Science 316:76–82. https://doi.org/10.1126/science.1135935

    Article  CAS  PubMed  Google Scholar 

  5. McClelland JL (2013) Incorporating rapid neocortical learning of new schema-consistent information into complementary learning systems theory. J Exp Psychol Gen 142:1190–1210. https://doi.org/10.1037/a0033812

    Article  PubMed  Google Scholar 

  6. Squire LR, Genzel L, Wixted JT, Morris RG (2015) Memory consolidation. Cold Spring Harb Perspect Biol 7:a021766. https://doi.org/10.1101/cshperspect.a021766

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amadio M, Battaini F, Pascale A (2006) The different facets of protein kinases C: old and new players in neuronal signal transduction pathways. Pharmacol Res 54:317–325. https://doi.org/10.1016/J.PHRS.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  8. Sun MK, Alkon DL (2014) The “memory kinases”: Roles of PKC isoforms in signal processing and memory formation. Prog Mol Biol Transl Sci 122:31–59. https://doi.org/10.1016/B978-0-12-420170-5.00002-7

    Article  CAS  PubMed  Google Scholar 

  9. Van Der Zee EA, Luiten PGM, Disterhoft JF (1997) Learning-induced alterations in hippocampal PKC-immunoreactivity: a review and hypothesis of its functional significance. Prog Neuro-Psychopharmacology Biol Psychiatry 21:531–572. https://doi.org/10.1016/S0278-5846(97)00017-1

    Article  Google Scholar 

  10. Mackay HJ, Twelves CJ (2007) Targeting the protein kinase C family: are we there yet? Nat Rev Cancer 7:554–562. https://doi.org/10.1038/nrc2168

    Article  CAS  PubMed  Google Scholar 

  11. Newton AC (1995) Protein Kinase C: Structure, function, and regulation. J Biol Chem 270:28495–28498. https://doi.org/10.1074/jbc.270.48.28495

    Article  CAS  PubMed  Google Scholar 

  12. Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Metab 298:E395–E402. https://doi.org/10.1152/ajpendo.00477.2009

    Article  CAS  Google Scholar 

  13. Saito N, Kikkawa U, Nishizuka Y, Tanaka C (1988) Distribution of protein kinase C-like immunoreactive neurons in rat brain. J Neurosci 8:369–382. https://doi.org/10.1523/JNEUROSCI.08-02-00369.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka C, Saito N (1992) Localization of subspecies of protein kinase C in the mammalian central nervous system. Neurochem Int 21:499–512. https://doi.org/10.1016/0197-0186(92)90081-2

    Article  CAS  PubMed  Google Scholar 

  15. Abeliovich A, Chen C, Goda Y, Silva AJ, Stevens CF, Tonegawa S (1993) Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75:1253–1262. https://doi.org/10.1016/0092-8674(93)90613-u

    Article  CAS  PubMed  Google Scholar 

  16. Saito N, Yasuhito S (2002) Protein Kinase C gamma (PKC gamma): Function of neuron specific isotype. J Biochem 132:683–687. https://doi.org/10.1093/oxfordjournals.jbchem.a003274

    Article  CAS  PubMed  Google Scholar 

  17. Young E, Cesena T, Meiri KF, Perrone-Bizzozero NI (2002) Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus 12:457–464. https://doi.org/10.1002/hipo.10015

    Article  CAS  PubMed  Google Scholar 

  18. Suen PC, Wu K, Xu JL, Lin SY, Levine ES, Black IB (1998) NMDA receptor subunits in the postsynaptic density of rat brain: Expression and phosphorylation by endogenous protein kinases. Mol Brain Res. 59:215–228. https://doi.org/10.1016/S0169-328X(98)00157-0

    Article  CAS  PubMed  Google Scholar 

  19. Sánchez-Pérez AM, Felipo V (2005) Serines 890 and 896 of the NMDA receptor subunit NR1 are differentially phosphorylated by protein kinase C isoforms. Neurochem Int. 47:84–91. https://doi.org/10.1016/j.neuint.2005.04.011

    Article  CAS  PubMed  Google Scholar 

  20. Wang JQ, Guo ML, Jin DZ, Xue B, Fibuch EE, Mao LM (2014) Roles of subunit phosphorylation in regulating glutamate receptor function. Eur J Pharmacol. 728:183–187. https://doi.org/10.1016/j.ejphar.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  21. Abeliovich A, Paylor R, Chen C, Kim JJ, Wehner JM, Tonegawa S (1993) PKCgamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75:1263–1271. https://doi.org/10.1016/0092-8674(93)90614-V

    Article  CAS  PubMed  Google Scholar 

  22. Sunyer B, Patil S, Höger H, Luber G (2007) Barnes maze, a useful task to assess spatial reference memory in the mice. Protoc Exch:1–12. https://doi.org/10.1038/nprot.2007.390

  23. Puighermanal E, Marsicano G, Busquets-garcia A et al (2009) Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat Neurosci 12:1152–1158. https://doi.org/10.1038/nn.2369

    Article  CAS  PubMed  Google Scholar 

  24. Busquets-Garcia A, Puighermanal E, Pastor A, de la Torre R, Maldonado R, Ozaita A (2011) Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses. Biol Psychiatry 70:479–486. https://doi.org/10.1016/j.biopsych.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  25. Ozaita A, Puighermanal E, Maldonado R (2007) Regulation of PI3K / Akt / GSK-3 pathway by cannabinoids in the brain. 1105–1114. https://doi.org/10.1111/j.1471-4159.2007.04642.x

  26. Raybuck JD, Matthew Lattal K (2011) Double dissociation of amygdala and hippocampal contributions to trace and delay fear conditioning. PLoS One 6:8–12. https://doi.org/10.1371/journal.pone.0015982

    Article  CAS  Google Scholar 

  27. Tanaka KZ, McHugh TJ (2018) The hippocampal engram as a memory index. J Exp Neurosci 12:117906951881594. https://doi.org/10.1177/1179069518815942

    Article  Google Scholar 

  28. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385. https://doi.org/10.1038/nature11028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Douma BRK, Van der Zee EA, Luiten PGM (1998) Translocation of protein kinase Cγ occurs during the early phase of acquisition of food rewarded spatial learning. Behav Neurosci 112:496–501. https://doi.org/10.1037/0735-7044.112.3.496

    Article  CAS  PubMed  Google Scholar 

  30. Naik MU, Benedikz E, Hernandez I, Libien J, Hrabe J, Valsamis M, Dow-Edwards D, Osman M et al (2000) Distribution of protein kinase Mζ and the complete protein kinase C isoform family in rat brain. J Comp Neurol 426:243–258. https://doi.org/10.1002/1096-9861(20001016)426:2<243::AID-CNE6>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  31. Weeber EJ, Atkins CM, Selcher JC, Varga AW, Mirnikjoo B, Paylor R, Leitges M, Sweatt JD (2000) A role for the β isoform of protein kinase C in fear conditioning. J Neurosci 20:5906–5914. https://doi.org/10.1523/jneurosci.20-16-05906.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crouch B, Sommerlade L, Veselcic P et al (2018) Detection of time-, frequency-, and direction-resolved communication within brain networks. Sci Rep 8. https://doi.org/10.1038/s41598-018-19707-1

  33. Su Q, Zhang H, Dang S, Yao D, Shao S, Zhu Z, Li H (2019) Hippocampal protein kinase C gamma signaling mediates the impairment of spatial learning and memory in prenatally stressed offspring rats. Neuroscience 19:30447–30446. https://doi.org/10.1016/j.neuroscience.2019.06.030

    Article  CAS  Google Scholar 

  34. Bangasser DA, Waxler DE, Santollo J, Shors TJ (2012) Trace conditioning and the hippocampus: the importance of contiguity. J Neurosci 26:8702–8706. https://doi.org/10.1523/JNEUROSCI.1742-06.2006.Trace

    Article  Google Scholar 

  35. Burman MA, Simmons CA, Hughes M, Lei L (2014) Developing and validating trace fear conditioning protocols in C57BL/6 mice. J Neurosci Methods. 222:111–117. https://doi.org/10.1016/j.jneumeth.2013.11.005

    Article  PubMed  Google Scholar 

  36. Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538. https://doi.org/10.1038/npp.2010.184

    Article  PubMed  Google Scholar 

  37. Morgan JI, Curran T (1986) Role of ion flux in the control of c-fos expression. Nature 322:552–555. https://doi.org/10.1038/322552a0

    Article  CAS  PubMed  Google Scholar 

  38. Lüscher Dias T, Fernandes Golino H, Moura de Oliveira VE et al (2016) c-Fos expression predicts long-term social memory retrieval in mice. Behav Brain Res 313:260–271. https://doi.org/10.1016/j.bbr.2016.07.030

    Article  CAS  PubMed  Google Scholar 

  39. Milanovic S, Radulovic J, Laban O, Stiedl O, Henn F, Spiess J (1998) Production of the Fos protein after contextual fear conditioning of C57BL/6 N mice. Brain Res 784:37–47. https://doi.org/10.1016/S0006-8993(97)01266-3

    Article  CAS  PubMed  Google Scholar 

  40. Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109. https://doi.org/10.1016/j.conb.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  41. Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science 317:1230–1234. https://doi.org/10.1126/science.1143839

    Article  CAS  PubMed  Google Scholar 

  42. Zelikowsky M, Hersman S, Chawla MK, Barnes CA, Fanselow MS (2014) Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. J Neurosci 34:8462–8466. https://doi.org/10.1523/jneurosci.3624-13.2014

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miyashita T, Kikuchi E, Horiuchi J, Saitoe M (2018) Long-term memory engram cells are established by c-Fos/CREB transcriptional cycling. Cell Rep 25:2716-2728.e3. https://doi.org/10.1016/j.celrep.2018.11.022

  44. Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341:387–391. https://doi.org/10.1126/science.1239073

    Article  CAS  PubMed  Google Scholar 

  45. Smith LM, Tonegawa S, Ogawa SK et al (2017) Engrams and circuits crucial for systems consolidation of a memory. Science 356:73–78. https://doi.org/10.1126/science.aam6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Busquets-Garcia A, Gomis-González M, Salgado-Mendialduá V et al (2018) Hippocampal protein kinase C signaling mediates the short-term memory impairment induced by Delta9-tetrahydrocannabinol. Neuropsychopharmacology 43:1021–1031. https://doi.org/10.1038/npp.2017.175

    Article  CAS  PubMed  Google Scholar 

  47. Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53:362–368. https://doi.org/10.1016/j.neuropharm.2007.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takagi N, Besshoh S, Morita H, Terao M, Takeo S, Tanonaka K (2010) Metabotropic glutamate mGlu5 receptor-mediated serine phosphorylation of NMDA receptor subunit NR1 in hippocampal CA1 region after transient global ischemia in rats. Eur J Pharmacol. 644:96–100. https://doi.org/10.1016/j.ejphar.2010.07.026

    Article  CAS  PubMed  Google Scholar 

  49. Tingley WG, Ehlers MD, Kameyama K, Doherty C, Ptak JB, Riley CT, Huganir RL (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the. Mol Biol. 272:5157–5166. https://doi.org/10.1074/jbc.272.8.5157

    Article  CAS  Google Scholar 

  50. Maren S (2001) Neurobiology of Pavlovian Fear Conditioning. Annu Rev Neurosci. 24:897–931. https://doi.org/10.1146/annurev.neuro.24.1.897

    Article  CAS  PubMed  Google Scholar 

  51. Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 23:649–711. https://doi.org/10.1146/annurev.neuro.23.1.649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dulce Real and Francisco Porrón for expert technical assistance and the Laboratory of Neuropharmacology-NeuroPhar for helpful discussion. Predoctoral fellowship by FPI (MINEICO/FEDER, EU) (LG-L). Predoctoral fellowship from the Spanish Ministry of Education (AB-G).

Funding

This work was supported by the Ministerio de Economía, Innovación y Competitividad (MINECO) [#BFU2015-68568-P to A.O., #SAF2017-84060-R to R.M.]; the Instituto de Salud Carlos III [#RD16/0017/0020 to R.M.]; the Ministerio de Ciencia, Innovación y Universidades [# RTI2018-099282-B-I00 (AEI/FEDER/UE) to A.O.]; the Generalitat de Catalunya [2017SGR-669 to R.M.]; the ICREA (Institució Catalana de Recerca i Estudis Avançats) Academia to A.O. and R.M.; Grant “Unidad de Excelencia María de Maeztu,” funded by the MINECO [#MDM-2014-0370]; PLAN E (Plan Español para el Estímulo de la Economía y el Empleo). FEDER funding is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael Maldonado or Andrés Ozaita.

Ethics declarations

Conflict of Interests

All authors report no biomedical financial interests or potential conflicts of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All animal procedures were conducted in accordance with the standard ethical guidelines (European Communities Directive 2010/63/EU) and approved by the local ethical committee (Comitè Ètic d'Experimentació Animal, CEEA-PRBB).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomis-González, M., Galera-López, L., Ten-Blanco, M. et al. Protein Kinase C-Gamma Knockout Mice Show Impaired Hippocampal Short-Term Memory While Preserved Long-Term Memory. Mol Neurobiol 58, 617–630 (2021). https://doi.org/10.1007/s12035-020-02135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02135-6

Keywords

Navigation