Skip to main content
Log in

Glyceraldehyde-3-Phosphate Dehydrogenase Facilitates Macroautophagic Degradation of Mutant Huntingtin Protein Aggregates

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Protein aggregate accumulation is a pathological hallmark of several neurodegenerative disorders. Autophagy is critical for clearance of aggregate-prone proteins. In this study, we identify a novel role of the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in clearance of intracellular protein aggregates. Previously, it has been reported that though clearance of wild-type huntingtin protein is mediated by chaperone-mediated autophagy (CMA), however, degradation of mutant huntingtin (mHtt with numerous poly Q repeats) remains impaired by this route as mutant Htt binds with high affinity to Hsc70 and LAMP-2A. This delays delivery of misfolded protein to lysosomes and results in accumulation of intracellular aggregates which are degraded only by macroautophagy. Earlier investigations also suggest that mHtt causes inactivation of mTOR signaling, causing upregulation of autophagy. GAPDH had earlier been reported to interact with mHtt resulting in cellular toxicity. Utilizing a cell culture model of mHtt aggregates coupled with modulation of GAPDH expression, we analyzed the formation of intracellular aggregates and correlated this with autophagy induction. We observed that GAPDH knockdown cells transfected with N-terminal mutant huntingtin (103 poly Q residues) aggregate-prone protein exhibit diminished autophagy. GAPDH was found to regulate autophagy via the mTOR pathway. Significantly more and larger-sized huntingtin protein aggregates were observed in GAPDH knockdown cells compared to empty vector–transfected control cells. This correlated with the observed decrease in autophagy. Overexpression of GAPDH had a protective effect on cells resulting in a decreased load of aggregates. Our results demonstrate that GAPDH assists in the clearance of protein aggregates by autophagy induction. These findings provide a new insight in understanding the mechanism of mutant huntingtin aggregate clearance. By studying the molecular mechanism of protein aggregate clearance via GAPDH, we hope to provide a new approach in targeting and understanding several neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All original data, plasmids, antibodies, and custom reagents are available from the corresponding authors laboratory.

Code Availability

Not applicable.

References

  1. Lim J, Yue Z (2015) Neuronal aggregates: formation, clearance, and spreading. Dev Cell 32(4):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Menzies FM, Moreau K, Rubinsztein DC (2011) protein misfolding disorders and macroautophagy. Curr Opin Cell Biol 23(2):190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Metcalf DJ, García-Arencibia M, Hochfeld WE, Rubinsztein DC (2012) Autophagy and misfolded proteins in neurodegeneration. Exp Neurol 238(1):22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sirover MA (1997) Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem 66(2):133–140

    Article  CAS  PubMed  Google Scholar 

  5. Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432(2):159–184

    Article  CAS  PubMed  Google Scholar 

  6. Sirover MA (2005) New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem 95(1):45–52

    Article  CAS  PubMed  Google Scholar 

  7. Hwang S, Disatnik MH, Mochly-Rosen D (2015) Impaired GAPDH-induced mitophagy contributes to the pathology of Huntington’s disease. EMBO Mol Med 7(10):1307–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23(2):317–323

    Article  CAS  PubMed  Google Scholar 

  9. Tatton W, Chalmers-Redman R, Elstner M, Leesch W, Jagodzinski F, Stupak D, Sugrue M, Tatton N (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. Advances in research on neurodegeneration. Springer, pp 77–100

  10. Kumar S, Sheokand N, Mhadeshwar MA, Raje CI, Raje M (2012) Characterization of glyceraldehyde-3-phosphate dehydrogenase as a novel transferrin receptor. Int J Biochem Cell Biol 44(1):189–199

    Article  CAS  PubMed  Google Scholar 

  11. Raje CI, Kumar S, Harle A, Nanda JS, Raje M (2007) The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 282(5):3252–3261

    Article  CAS  PubMed  Google Scholar 

  12. Sheokand N, Malhotra H, Chauhan AS, Kumar M, Chaudhary S, Patidar A, Boradia VM, Raje CI, Raje M (2016) Reverse overshot water-wheel retroendocytosis of apotransferrin extrudes cellular iron. J Cell Sci 129(4):843–853

    CAS  PubMed  Google Scholar 

  13. Sheokand N, Kumar S, Malhotra H, Tillu V, Raje CI, Raje M (2013) Secreted glyceraldehye-3-phosphate dehydrogenase is a multifunctional autocrine transferrin receptor for cellular iron acquisition. Biochim Biophys Acta Gen Subj 1830(6):3816–3827

    Article  CAS  Google Scholar 

  14. Rawat P, Kumar S, Sheokand N, Raje CI, Raje M (2012) The multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a novel macrophage lactoferrin receptor. Biochem Cell Biol 90(3):329–338

    Article  CAS  PubMed  Google Scholar 

  15. Chauhan AS, Rawat P, Malhotra H, Sheokand N, Kumar M, Patidar A, Chaudhary S, Jakhar P, Raje CI, Raje M (2015) Secreted multifunctional glyceraldehyde-3-phosphate dehydrogenase sequesters lactoferrin and iron into cells via a non-canonical pathway. Sci Rep 5(1):18465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chauhan AS, Kumar M, Chaudhary S, Patidar A, Dhiman A, Sheokand N, Malhotra H, Iyengar Raje C, Raje M (2017) Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. FASEB J 31(6):2638–2648

    Article  CAS  PubMed  Google Scholar 

  17. Guha P, Harraz MM, Snyder SH (2016) Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade. Proc Natl Acad Sci 113(5):1417–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chang C, Su H, Zhang D, Wang Y, Shen Q, Liu B, Huang R, Zhou T, Peng C, Wong CC (2015) AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60(6):930–940

    Article  CAS  PubMed  Google Scholar 

  19. Burke JR, Enghild JJ, Martin ME, Jou Y-S, Myers RM, Roses AD, Vance JM, Strittmatter WJ (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2(3):347

    Article  CAS  PubMed  Google Scholar 

  20. Sunaga K, Takahashi H, Chuang D-M, Ishitani R (1995) Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer’s brain. Neurosci Lett 200(2):133–136

    Article  CAS  PubMed  Google Scholar 

  21. Schulze H, Schuler A, Stüber D, Döbeli H, Langen H, Huber G (1993) Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the recombinant cytoplasmic domain of Alzheimer’s β-amyloid precursor protein. J Neurochem 60(5):1915–1922

    Article  CAS  PubMed  Google Scholar 

  22. Gerszon J, Rodacka A (2018) Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase in neurodegenerative processes and the role of low molecular weights compounds in counteracting its aggregation and nuclear translocation. Ageing Res Rev 48:21–31

    Article  CAS  PubMed  Google Scholar 

  23. Chauhan AS, Kumar M, Chaudhary S, Dhiman A, Patidar A, Jakhar P, Jaswal P, Sharma K, Sheokand N, Malhotra H et al (2019) Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways. FASEB J 33(4):5626–5640

    Article  CAS  PubMed  Google Scholar 

  24. Kish SJ, Lopes-Cendes I, Guttman M, Furukawa Y, Pandolfo M, Rouleau GA, Ross BM, Nance M, Schut L, Ang L (1998) Brain glyceraldehyde-3-phosphate dehydrogenase activity in human trinucleotide repeat disorders. Arch Neurol 55(10):1299–1304

    Article  CAS  PubMed  Google Scholar 

  25. Mazzola JL, Sirover MA (2001) Reduction of glyceraldehyde-3-phosphate dehydrogenase activity in Alzheimer’s disease and in Huntington’s disease fibroblasts. J Neurochem 76(2):442–449

    Article  CAS  PubMed  Google Scholar 

  26. MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983

    Article  Google Scholar 

  27. Novoselova TV, Margulis BA, Novoselov SS, Sapozhnikov AM, Van Der Spuy J, Cheetham ME, Guzhova IV (2005) Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem 94(3):597–606

    Article  CAS  PubMed  Google Scholar 

  28. Lazarev V, Sverchinskyi D, Ippolitova M, Stepanova A, Guzhova I, Margulis B (2013) Factors affecting aggregate formation in cell models of Huntington’s disease and amyotrophic lateral sclerosis. Acta Naturae 5(2(17)):81–89

  29. Zhou H, Li S-H, Li X-J (2001) Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J Biol Chem 276(51):48417–48424

    Article  CAS  PubMed  Google Scholar 

  30. Guzhova IV, Lazarev VF, Kaznacheeva AV, Ippolitova MV, Muronetz VI, Kinev AV, Margulis BA (2011) Novel mechanism of Hsp70 chaperone-mediated prevention of polyglutamine aggregates in a cellular model of huntington disease. Hum Mol Genet 20(20):3953–3963

    Article  CAS  PubMed  Google Scholar 

  31. Walter C, Clemens LE, Müller AJ, Fallier-Becker P, Proikas-Cezanne T, Riess O, Metzger S, Nguyen HP (2016) Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology 108:24–38

    Article  CAS  PubMed  Google Scholar 

  32. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11(9):1107–1117

    Article  CAS  PubMed  Google Scholar 

  33. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585

    Article  CAS  PubMed  Google Scholar 

  34. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RAV, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4(142):142ra197-142ra197

    Article  Google Scholar 

  35. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F, Pavel M, Squitieri F, Hardenberg MC, Imarisio S, Menzies FM (2017) Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545(7652):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manning BD, Cantley LC (2003) Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28(11):573–576

    Article  CAS  PubMed  Google Scholar 

  37. Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Potheraveedu VN, Schöpel M, Stoll R, Heumann R (2017) Rheb in neuronal degeneration, regeneration, and connectivity. Biol Chem 398(5–6):589–606

    Article  CAS  PubMed  Google Scholar 

  40. Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D, Worley PF (1994) rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269(23):16333–16339

    Article  CAS  PubMed  Google Scholar 

  41. Wang T, Lao U, Edgar BA (2009) TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol 186(5):703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966

    Article  CAS  PubMed  Google Scholar 

  44. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15(3):433–442

    Article  CAS  PubMed  Google Scholar 

  45. Boradia Vishant M, Raje M, Raje Chaaya I (2014) Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Biochem Soc Trans 42(6):1796–1801

    Article  PubMed  Google Scholar 

  46. Lazarev VF, Guzhova IV, Margulis BA (2020) Glyceraldehyde-3-phosphate dehydrogenase is a multifaceted therapeutic target. Pharmaceutics 12(5):416

    Article  CAS  PubMed Central  Google Scholar 

  47. Wu J, Lin F, Qin Z (2007) Sequestration of glyceraldehyde-3-phosphate dehydrogenase to aggregates formed by mutant huntingtin. Acta Biochim Biophys Sin 39(11):885–890

    Article  CAS  PubMed  Google Scholar 

  48. Bae B-I, Hara MR, Cascio MB, Wellington CL, Hayden MR, Ross CA, Ha HC, Li X-J, Snyder SH, Sawa A (2006) Mutant huntingtin: nuclear translocation and cytotoxicity mediated by GAPDH. Proc Natl Acad Sci USA 103(9):3405–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rao DD, Senzer N, Cleary MA, Nemunaitis J (2009) Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther 16(11):807–809

    Article  CAS  PubMed  Google Scholar 

  50. Brattås PL, Hersbach BA, Madsen S, Petri R, Jakobsson J, Pircs K (2021) Impact of differential and time-dependent autophagy activation on therapeutic efficacy in a model of Huntington disease. Autophagy 17(6):1316–1329

    Article  PubMed  Google Scholar 

  51. Kumar A, Kumar V, Singh K, Kumar S, Kim Y-S, Lee Y-M, Kim J-J (2020) Therapeutic advances for Huntington’s disease. Brain Sci 10(1):43

    Article  CAS  PubMed Central  Google Scholar 

  52. Moon GJ, Shin M, Kim SR (2020) Upregulation of neuronal Rheb(S16H) for hippocampal protection in the adult brain. Int J Mol Sci 21(6):2023

    Article  CAS  PubMed Central  Google Scholar 

  53. Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang WC, Page DT, MacDonald ME, Subramaniam S (2014) Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal 7(349):2005633

    Article  Google Scholar 

Download references

Acknowledgements

Mr Anil Theophilus and Mr Randeep Sharma are acknowledged for technical assistance. This is IMTECH communication No. 072/2020.

Funding

AD, GKC, ST, and AP received fellowships from DBT; SC and RSM were recipients of fellowships from UGC, while RD was a recipient of ICMR fellowship. CSIR, DBT, DST, and ICMR also provided financial support.

Author information

Authors and Affiliations

Authors

Contributions

AD, RD, GKC, ST, AP, SC, HM, and RSM all carried out the experiments in the manuscript and compiled the preliminary data; SC, CIR, and MR analyzed the data and compiled the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Raje.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have consented of the contents and publication of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 129 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Dhiman, A., Dilawari, R. et al. Glyceraldehyde-3-Phosphate Dehydrogenase Facilitates Macroautophagic Degradation of Mutant Huntingtin Protein Aggregates. Mol Neurobiol 58, 5790–5798 (2021). https://doi.org/10.1007/s12035-021-02532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02532-5

Keywords

Navigation