Skip to main content
Log in

Living in a physical world X. Pumping fluids through conduits

  • Series
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Agnisola C 1990 Functional morphology of the coronary supply of the systemic heart of Octopus vulgaris; Physiol. Zool. 63 3–11

    Google Scholar 

  • Alexander R M 1962 Visco-elastic properties of the body wall of sea anemones; J. Exp. Biol. 39 373–386

    Google Scholar 

  • Alexander R M 1969 Mechanics of the feeding action of a cyprinid fish; J. Zool. London 159 1–15

    Google Scholar 

  • Batham E J and Pantin C F A 1950 Muscular and hydrostatic action in the sea anemone, Metridium senile (L.); J. Exp. Biol. 27 264–289

    CAS  PubMed  Google Scholar 

  • Bennet-Clark H C 1963 Negative pressures produced in the pharyngeal pump of the blood-sucking bug, Rhodnius prolixus; J. Exp. Biol. 40 223–229

    Google Scholar 

  • Bidder G P 1923 The relationship of the form of a sponge to its currents; Q. J. Microscop. Soc. 67 292–323

    Google Scholar 

  • Borrell B J 2004 Suction feeding in orchid bees (Apidae: Euglossini); Proc. R. Soc. London (Supp4)B271 164–166

    Google Scholar 

  • Brainerd E L, Page B N and Fish F E 1997 Opercular jetting during fast starts by flatfishes; J. Exp. Biol. 200 1179–1188

    CAS  PubMed  Google Scholar 

  • Cermák J, Cienciala E, Kucera J, Lindroth A and Hällgren J E 1992 Radial velocity profiles of water flow in stems of Norway spruce and oak and the response of spruce to severing; Tree Physiol. 10 367–380

    PubMed  Google Scholar 

  • Cheng J-Y, Davison I G and DeMont M E 1996 Dynamics and energetics of scallop locomotion; J. Exp. Biol. 199 1931–1946

    CAS  PubMed  Google Scholar 

  • Curran P F 1960 Na, Cl, and water transport by rat ileum in vitro; J. Gen. Physiol. 43 1137–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curran P F and MacIntosh J R 1962 A model system for biological water transport; Nature (London) 193 347–348

    CAS  Google Scholar 

  • Daniel T L and Kingsolver 1983 Feeding strategy and the mechanics of blood sucking in insects; J. Theor. Biol. 105 661–672

    CAS  PubMed  Google Scholar 

  • DeMont M E and Gosline J M 1988 Mechanics of jet propulsion in the hydromedusan jellyfish, Polyorchis penicillatus. II. Energetics of the jet cycle; J. Exp. Biol. 134 333–345

    Google Scholar 

  • Diamond J M and Bossert W H 1967 Standing-gradient osmotic flow; J. Gen. Physiol. 50 2061–2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drost M R, Muller M and Osse J W M 1988 A quantitative hydrodynamical model of suction feeding in larval fishes: the role of frictional forces; Proc. R. Soc. London B234 263–281

    Google Scholar 

  • Fichtner K and Schulze E-D 1990 Xylem water flow in tropical vines as measured by a steady state heating method; Oecologia 82 355–361

    CAS  PubMed  Google Scholar 

  • Forouhar A S, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai H-J, Hove J R, Fraser S E, Dickinson M E and Gharib M 2006 The embryonic vertebrate heart is a dynamic suction tube; Science 312 751–753

    CAS  PubMed  Google Scholar 

  • Forterre Y, Skotheim J M, Dumais J and Mahadevan L 2005 How the Venus flytrap snaps; Nature (London) 443 421–425

    Google Scholar 

  • Foster-Smith R L 1978 An analysis of water flow in tube-living animals; J. Exp. Mar. Biol. Ecol. 34 73–95

    Google Scholar 

  • Gibbons C A and Shadwick R E 1991 Circulatory mechanics in the toad Bufo marinus. II. Hemodynamics of the arterial windkessel; J. Exp. Biol. 158 291–306

    Google Scholar 

  • Glemain J, Cordonnier J P, LeNormand L and Buzelin J M 1990 Urodynamic consequences of urethral stenosis: hydrodynamic study with a theoretical model; J. d’Urol. 96 271–277

    CAS  Google Scholar 

  • Goddard C K 1972 Structure of the heart of the ascidian Pyura praeputialis; Aust. J. Biol. Sci. 25 645–647

    CAS  PubMed  Google Scholar 

  • Gosline J M 1971 Connective tissue mechanics of Metridium senile. II. Viscoelastic properties and a macromolecular model; J. Exp. Biol. 55 775–795

    Google Scholar 

  • Hertel H 1966 Structure, form and movement (New York: Reinhold)

    Google Scholar 

  • Hughes G M 1958 The co-ordination of insect movements; J. Exp. Biol. 35 567–583

    Google Scholar 

  • Johansen K and Martin A W 1965 Circulation in a giant earthworm, Glossoscolex giganteus. I. Contractile processes and pressure gradients in the large vessels; J. Exp. Biol. 43 333–347

    Google Scholar 

  • Jones H D 1983 Circulatory systems of gastropods and bivalves; in The mollusca, v5 (ed.) K M Wilbur (New York: Academic Press) pp 189–238

    Google Scholar 

  • Jones, J C 1977 The circulatory system of insects (Springfield, IL: Charles C Thomas)

    Google Scholar 

  • Jones J M, Wentzell L A and Toews D P 1992 Posterior lymph heart pressure and rate and lymph flow in the toad Bufo marinus in response to hydrated and dehydrated conditions; J. Exp. Biol. 169 207–220

    CAS  PubMed  Google Scholar 

  • Karassik I J, Messina J P, Cooper P and Heald C C 2000 Pump handbook 3rd edition (New York: McGraw Hill Professional)

    Google Scholar 

  • Kardong K and Lavin-Murcio P 1993 Venom delivery of snakes as high-pressure and low-pressure systems; Copeia 1993 644–650

    Google Scholar 

  • Kingsolver J G and Daniel T L 1983 Mechanical determinants of nectar feeding in hummingbirds: energetics, tongue morphology, and licking behavior; Oecologia 60 214–226

    PubMed  Google Scholar 

  • Kingsolver J G and Daniel T L 1995 Mechanics of food handling by fluid-feeding insects; in Regulatory mechanisms in insect feeding (eds) R F Chapman and G deBoer (New York: Chapman and Hall) pp 32–73

    Google Scholar 

  • Koehl M A R 1977 Mechanical diversity of connective tissue of the body wall of sea anemones; J. Exp. Biol. 69 107–125

    Google Scholar 

  • Kramer P J 1959 Transpiration and the water economy of plants; in Plant physiology v2 (ed.) F C Steward (New York: Academic Press) pp 607–726

    Google Scholar 

  • LaBarbera M and Vogel S 1982 The design of fluid transport systems in organisms; Am. Sci. 70 54–60

    Google Scholar 

  • Lai N, Shabetai R, Graham J B, Hoit B D, Sunnerhagen K S and Bhargava V 1990 Cardiac function of the leopard shark, Triakis semifasciata; J. Comp. Physiol. B160 259–268

    Google Scholar 

  • Lauder G V 1980 The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis; J. Exp. Biol. 88 49–72

    Google Scholar 

  • Lauder G V 1984 Pressure and water flow patterns in the respiratory tract of the bass (Micropterus salmoides); J. Exp. Biol. 113 151–164

    Google Scholar 

  • Lillywhite H B 2006 Water relations of tetrapod integument; J. Exp. Biol. 209 202–226

    PubMed  Google Scholar 

  • Lillywhite H B and Licht P 1974 Movement of water over toad skin: functional role of epidermal sculpturing; Copeia 1974 165–171

    Google Scholar 

  • Martin A W 1974 Circulation in invertebrates; Annu. Rev. Physiol. 36 171–186

    CAS  PubMed  Google Scholar 

  • Milnor W R 1990 Cardiovascular physiology (New York: Oxford University Press)

    Google Scholar 

  • Müller J 1833 On the existence of four distinct hearts, having regular pulsations, connected with the lymphatic system, in certain amphibious animals; Philos. Trans. R. Soc. London 123 89–94

    Google Scholar 

  • Nobel P S 2005 Physicochemical and environmental plant physiology (Burlington MA: Elsevier)

    Google Scholar 

  • Ottaviani G and Tazzi A 1977 The lymphatic system; in Biology of the reptilia, v6 (ed.) C Gans (London: Academic Press) pp 315–462

    Google Scholar 

  • Pickard, R S and Mill P J 1974 Ventilatory movements of the abdomen and branchial apparatus in dragonfly larvae (Odonata: Anisoptera); J. Zool. London 174 23–40

    Google Scholar 

  • Pickard W F 2003a The riddle of root pressure. I. Putting Maxwell’s demon to rest; Func. Pl. Biol. 30 121–134

    Google Scholar 

  • Pickard, W F 2003b The riddle of root pressure. II. Root exudation at extreme osmolalities; Func. Pl. Biol. 30 135–141

    Google Scholar 

  • Pittermann J and Sperry J S 2003 Tracheid diameter determines the extent of freeze-thaw induced cavitation in conifers; Tree Physiol. 23 907–914

    PubMed  Google Scholar 

  • Prosser, C L 1973 Comparative animal physiology, 3rd edition (Philadelphia: W B Saunders)

    Google Scholar 

  • Riisgård H U and Larsen P S 1995 Filter-feeding in marine macro-invertebrates: pump characteristics, modeling and energy cost; Biol. Rev. 70 67–106

    PubMed  Google Scholar 

  • Rubega M A and Obst B S 1993 Surface-tension feeding in phalaropes: discovery of a novel feeding mechanism; Auk 110 169–178

    Google Scholar 

  • Schmidt-Nielsen K 1997 Animal physiology: adaptation and environment 5th edition (Cambridge: Cambridge University Press)

    Google Scholar 

  • Schneider H, Wistuba N, Wagner H-J, Thürmer F and Zimmermann U 2000 Water rise kinetics in refilling xylem after desiccation in a resurrection plant; New Phytol. 148 221–238

    CAS  PubMed  Google Scholar 

  • Schulz J R, Norton A G and Gilly W F 2004 The projectile tooth of a fish-hunting snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism; Biol. Bull. 207 77–79

    PubMed  Google Scholar 

  • Shadwick R E 1994 Mechanical organization of the mantle and circulatory system of cephalopods; Mar. Fresh. Behav. Physiol. 25 69–85

    Google Scholar 

  • Sláma K 2003 Mechanical aspects of heartbeat reversal in pupae of Manduca sexta; J. Insect. Physiol. 49 645–657

    PubMed  Google Scholar 

  • Southwick E E and Moritz R F A 1987 Social control of air ventilation in colonies of honey bees, Apis mellifera; J. Insect Physiol. 33 623–626

    Google Scholar 

  • Steffensen J F 1985 The transition between branchial pumping and ram ventilation in fishes: energetic consequences and dependence on water oxygen tension; J. Exp. Biol. 114 141–150

    Google Scholar 

  • Stevens E D and Lightfoot E N 1986 Hydrodynamics of water flow in front of and through the gills of skipjack tuna; Comp. Biochem. Physiol. A83 255–259

    Google Scholar 

  • Thompson M V and Holbrook N M 2003 Scaling phloem transport: water potential equilibrium and osmoregulatory flow; Plant Cell Environ. 26 1561–1577

    Google Scholar 

  • Trager G C, Hwang J-S and Strickler J R 1990 Barnacle suspension feeding in variable flow; Mar. Biol. 105 117–128

    Google Scholar 

  • Trail F, Gaffoor I and Vogel S 2005 Ejection mechanics and trajectories of the ascospores of Gibberella zeae (anamorph Fusarium graminerarum); Fungal Genet. Biol. 42 528–533

    PubMed  Google Scholar 

  • Turner J S 2000 The extended organism: the physiology of animal-built structures (Cambridge MA: Harvard University Press)

    Google Scholar 

  • Tyree M T 2001 Capillarity and sap ascent in a resurrection plant: does theory fit the facts? New Phytol 150 9–11

    Google Scholar 

  • Tyree M T and Zimmermann M H 2002 Xylem structure and the ascent of sap (Berlin: Springer-Verlag)

    Google Scholar 

  • van Bel A 1993 Strategies of phloem loading; Annu. Rev. Pl. Physiol. Pl. Mol. Biol. 44 253–281

    Google Scholar 

  • Vogel S 1978 Evidence for one-way valves in the water-flow system of sponges; J. Exp. Biol. 76 137–148

    Google Scholar 

  • Vogel S 1994 Life in moving fluids (Princeton NJ: Princeton University Press)

    Google Scholar 

  • Vogel S 1995 Pressure versus flow in biological pumps; in Biological fluid dynamics: symposium of the society for experimental biology (eds) C P Ellington and T J Pedley (Cambridge, UK: The Company of Biologists) pp 297–304

    Google Scholar 

  • Vogel S 2004 Living in a physical world. I. Two ways to move material; J. Biosci. 29 391–397

    PubMed  Google Scholar 

  • Vogel S 2005a Living in a physical world. III. Getting up to speed; J. Biosci. 30 303–312

    PubMed  Google Scholar 

  • Vogel S 2005b Living in a physical world. IV. Moving heat around; J. Biosci. 30 449–460

    PubMed  Google Scholar 

  • Vogel S 2006 Living in a physical world. VII. Gravity and life on the ground; J. Biosci. 31 201–214

    PubMed  Google Scholar 

  • Wells M J 1987 The performance of the octopus circulatory system: a triumph of engineering over design; Experientia 43 487–99

    Google Scholar 

  • Yigit N, Güven T, Bayram A and Cavusoglu K 2004 A morphological study on the venom apparatus of the spider Agelena labyrinthica (Araneae, Agelenidae); Turk. J. Zool. 28 149–153

    Google Scholar 

  • Yokoyama, T 2004 Motor or sensor: a new aspect of primary cilia function; Anat. Sci. Int. 79 47–54

    PubMed  Google Scholar 

  • Young B A, Dunlap K, Koenig K and Singer M 2004 The buccal buckle: the functional morphology of venom spitting in cobras; J. Exp. Biol. 207 1383–1394

    Google Scholar 

  • Young B A, Phelan M, Morain M, Ommundsen M and Kurt R 2003 Venom injection by rattlesnakes (Crotalus atrox): peripheral resistance and the pressure balance hypothesis; Can. J. Zool. 81 313–320

    Google Scholar 

  • Zimmermann M H 1971 Transport in the xylem; in Trees: Structure and function (eds) M H Zimmermann and C L Brown (New York: Springer-Verlag) pp 169–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, S. Living in a physical world X. Pumping fluids through conduits. J Biosci 32, 207–222 (2007). https://doi.org/10.1007/s12038-007-0021-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0021-4

Keywords

Navigation