Skip to main content

Advertisement

Log in

Astrocyte, the star avatar: redefined

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Until recently, the neuroscience community held the belief that glial cells such as astrocytes and oligodendrocytes functioned solely as “support” cells of the brain. In this role, glial cells simply provide physical support and housekeeping functions for the more important cells of the brain, the neurons. However, this view has changed radically in recent years with the discovery of previously unrecognized and surprising functions for this underappreciated cell type. In the past decade or so, emerging evidence has provided new insights into novel glial cell activities such as control of synapse formation and function, communication, cerebrovascular tone regulation, immune regulation and adult neurogenesis. Such advances in knowledge have effectively elevated the role of the astrocyte to one that is more important than previously realized. This review summarizes the past and present knowledge of glial cell functions that has evolved over the years, and has resulted in a new appreciation of astrocytes and their value in studying the neurobiology of human brain cells and their functions. In this review, we highlight recent advances in the role of glial cells in physiology, pathophysiology and, most importantly, in adult neurogenesis and “stemness”, with special emphasis on astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACT:

α-antichymotrypsin

AD:

Alzheimer disease

ALS:

amyotrophic lateral sclerosis

ADAMTS:

A disintegrin and metalloproteinase with thrombospondin motifs

AMPA:

alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APC:

antigen-presenting cell

APP:

amyloid precursor protein

ATP:

adenosine triphosphate

BBB:

blood-brain barrier

BchE:

butyrylcholinesterase

BDNF:

brain derived neurotrophic factor

BLBP:

basic lipid-binding protein

CNS:

central nervous system

CNTF:

ciliary neurotrophic factor

COX-2:

cyclooxygenase-2

CXCL:

chemokine CXC ligand

EDGF:

epidermal-derived growth factor

FGF:

fibroblast-derived growth factor

FGFR:

fibroblast growth factor receptor

GABA:

gamma amino butyric acid, GDNF, glial cell line-derived neurotrophic factor

GFAP:

glial fibrillary acidic protein

IGFBP6:

insulin-like growth factor-binding protein-6

IL:

interleukin

iNOS:

inducible nitric oxide synthase

LIF:

leukaemia inhibitory factor

LTP:

long-term potentiation

MBP:

myelin basic protein

MCP:

monocyte chemoattractant protein

MHC:

major histocompatibility complex

MOG:

myelin oligodendrocyte glycoprotein

MS:

multiple sclerosis

NMDAR:

N-methyl-D-aspartate receptor

NGF:

nerve growth factor

NSC:

neural stem cell

PLP:

proteolipid protein

RMS:

rostral migratory stream

SDF:

stromal derived factor

SIC:

small inward current

SOD:

superoxide dismutase

SVZ:

subventricular zone

TH:

tyrosine hydroxylase

TNF:

tumour necrosis factor

VM:

ventral mesencephalic

VZ:

ventricular zone

References

  • Abbott N J 2002 Astrocyte-endothelial interactions and blood-brain barrier permeability; J. Anat. 200 629–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abramov A Y, Canevari L and Duchen M R 2004 Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase; J. Neurosci. 24 565–575

    CAS  PubMed  Google Scholar 

  • Abramov A Y, Canevari L and Duchen M R 2004 Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture; Biochim. Biophys. Acta 1742 81–87

    CAS  PubMed  Google Scholar 

  • Akerud P, Canals J M, Snyder E Y and Arenas E 2001 Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson’s disease; J. Neurosci. 21 8108–8118

    CAS  PubMed  Google Scholar 

  • Albrecht P J, Dahl J P, Stoltzfus O K, Levenson R and Levison S W 2002 Ciliary neurotrophic factor activates spinal cord astrocytes, stimulating their production and release of fibroblast growth factor-2, to increase motor neuron survival; Exp. Neurol. 173 46–62

    CAS  PubMed  Google Scholar 

  • Albrecht P J, Enterline J C, Cromer J and Levison S W 2007 CNTF-activated astrocytes release a soluble trophic activity for oligodendrocyte progenitors; Neurochem. Res. 32 263–271

    CAS  PubMed  Google Scholar 

  • Albrecht P J, Murtie J C, Ness J K, Redwine J M, Enterline J R, Armstrong R C and Levison S W 2003 Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production; Neurobiol. Dis. 13 89–101

    CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A and Garcia-Verdugo J M 2002 Neurogenesis in adult subventricular zone; J. Neurosci. 22 629–634

    CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A and Lim D A 2004 For the long run: maintaining germinal niches in the adult brain; Neuron 41 683–686

    CAS  PubMed  Google Scholar 

  • Anderson C M and Nedergaard M 2003 Astrocyte-mediated control of cerebral microcirculation; Trends Neurosci. 26 340–344; author reply 344–345

    CAS  PubMed  Google Scholar 

  • Anthony T E, Klein C, Fishell G and Heintz N 2004 Radial glia serve as neuronal progenitors in all regions of the central nervous system; Neuron 41 881–890

    CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri R P and Haydon P G 1998 Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons; Eur. J. Neurosci. 10 2129–2142

    CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri R P and Haydon P G 1999 Tripartite synapses: glia, the unacknowledged partner; Trends Neurosci. 22 208–215

    CAS  PubMed  Google Scholar 

  • Arber S and Caroni P 1995 Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth; J. Cell Biol. 131 1083–1094

    CAS  PubMed  Google Scholar 

  • Ballabh P, Braun A and Nedergaard M 2004 The blood-brain barrier: an overview: structure, regulation, and clinical implications; Neurobiol. Dis. 16 1–13

    CAS  PubMed  Google Scholar 

  • Barkho B Z, Song H, Aimone J B, Smrt R D, Kuwabara T, Nakashima K, Gage F H and Zhao X 2006 Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation; Stem Cells Dev. 15 407–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes D A, Huston M, Holmes R, Benveniste E N, Yong V W, Scholz P and Perez H D 1996 Induction of RANTES expression by astrocytes and astrocytoma cell lines; J. Neuroimmunol. 71 207–214

    CAS  PubMed  Google Scholar 

  • Beattie E C, Stellwagen D, Morishita W, Bresnahan J C, Ha B K, Von Zastrow M, Beattie M S and Malenka R C 2002 Control of synaptic strength by glial TNF alpha; Science 295 2282–2285

    CAS  PubMed  Google Scholar 

  • Benjelloun N, Joly L M, Palmier B, Plotkine M and Charriaut-Marlangue C 2003 Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia-ischaemia in the rat brain; Neuropathol. Appl. Neurobiol. 29 350–360

    CAS  PubMed  Google Scholar 

  • Benveniste E N 1992 Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action; Am. J. Physiol. 263 C1–C16

    CAS  PubMed  Google Scholar 

  • Bernardes-Silva M, Anthony D C, Issekutz A C and Perry V H 2001 Recruitment of neutrophils across the blood — brain barrier: the role of E-and P-selectins; J. Cereb. Blood Flow Metab. 21 1115–1124

    CAS  PubMed  Google Scholar 

  • Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P and Grubeck-Loebenstein B 2004 How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes; Aging Cell 3 169–176

    CAS  PubMed  Google Scholar 

  • Bliss T V and Collingridge G L 1993 A synaptic model of memory: long-term potentiation in the hippocampus; Nature (London) 361 31–39

    CAS  Google Scholar 

  • Boston-Howes W, Gibb S L, Williams E O, Pasinelli P, Brown R H Jr and Trotti D 2006 Caspase-3 cleaves and inactivates the glutamate transporter EAAT2; J. Biol. Chem. 281 14076–14084

    CAS  PubMed  Google Scholar 

  • Boulder Committee 1970 Embryonic vertebrate central nervous system: revised terminology; Anat. Rec. 166 257–261

    Google Scholar 

  • Bourne H R and Nicoll R 1993 Molecular machines integrate coincident synaptic signals; Cell (Suppl.) 72 65–75

    Google Scholar 

  • Bruijn L I, Becher M W, Lee M K, Anderson K L, Jenkins N A, Copeland N G, Sisodia S S, Rothstein J D, Borchelt D R, Price D L and Cleveland D W 1997 ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions; Neuron 18 327–338

    CAS  PubMed  Google Scholar 

  • Calderon T M, Eugenin E A, Lopez L, Kumar S S, Hesselgesser J, Raine C S and Berman J W 2006 A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein; J. Neuroimmunol. 177 27–39

    CAS  PubMed  Google Scholar 

  • Campbell K and Gotz M 2002 Radial glia: multi-purpose cells for vertebrate brain development; Trends Neurosci. 25 235–238

    CAS  PubMed  Google Scholar 

  • Cassina P, Pehar M, Vargas M R, Castellanos R, Barbeito A G, Estevez A G, Thompson J A, Beckman J S and Barbeito L 2005 Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis; J. Neurochem. 93 38–46

    CAS  PubMed  Google Scholar 

  • Cassina P, Peluffo H, Pehar M, Martinez-Palma L, Ressia A, Beckman J S, Estevez A G and Barbeito L 2002 Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis; J. Neurosci. Res. 67 21–29

    CAS  PubMed  Google Scholar 

  • Choi D W and Rothman S M 1990 The role of glutamate neurotoxicity in hypoxic — ischemic neuronal death; Annu. Rev. Neurosci. 13 171–182

    CAS  PubMed  Google Scholar 

  • Christopherson K S, Ullian E M, Stokes C C, Mullowney C E, Hell J W, Agah A, Lawler J, Mosher D F, Bornstein P and Barres B A 2005 Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis; Cell 120 421–433

    CAS  PubMed  Google Scholar 

  • Cleary M A, Uboha N, Picciotto M R and Beech R D 2006 Expression of ezrin in glial tubes in the adult subventricular zone and rostral migratory stream; Neuroscience 143 851–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collignon F, Wetjen N M, Cohen-Gadol A A, Cascino G D, Parisi J, Meyer F B, Marsh W R, Roche P and Weigand SD 2006 Altered expression of connexin subtypes in mesial temporal lobe epilepsy in humans; J. Neurosurg. 105 77–87

    CAS  PubMed  Google Scholar 

  • Constantine-Paton M 1990 NMDA receptor as a mediator of activity-dependent synaptogenesis in the developing brain; Cold Spring Harb. Symp. Quant. Biol. 55 431–443

    CAS  PubMed  Google Scholar 

  • Constantine-Paton M, Cline H T and Debski E 1990 Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways; Annu. Rev. Neurosci. 13 129–154

    CAS  PubMed  Google Scholar 

  • Craig C G, Tropepe V, Morshead C M, Reynolds B A, Weiss S and van der Kooy D 1996 In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain; J. Neurosci. 16 2649–2658

    CAS  PubMed  Google Scholar 

  • Cunningham L A and Su C 2002 Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson’s disease; Exp. Neurol. 174 230–242

    CAS  PubMed  Google Scholar 

  • De Keyser J, Wilczak N, Leta R and Streetland C 1999 Astrocytes in multiple sclerosis lack beta-2 adrenergic receptors; Neurology 53 1628–1633

    PubMed  Google Scholar 

  • De Keyser J, Zeinstra E and Wilczak N 2004 Astrocytic beta2-adrenergic receptors and multiple sclerosis; Neurobiol. Dis. 15 331–339

    PubMed  Google Scholar 

  • Deitmer J W, Verkhratsky A J and Lohr C 1998 Calcium signalling in glial cells; Cell Calcium 24 405–416

    CAS  PubMed  Google Scholar 

  • Del Bigio M R, Yan H J and Xue M 2001 Intracerebral infusion of a second-generation ciliary neurotrophic factor reduces neuronal loss in rat striatum following experimental intracerebral hemorrhage; J. Neurol. Sci. 192 53–59

    PubMed  Google Scholar 

  • Diamond J S 2006 Astrocytes put down the broom and pick up the baton; Cell 125 639–641

    CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D and Traynelis S F 1999 The glutamate receptor ion channels; Pharmacol. Rev. 51 7–61

    CAS  PubMed  Google Scholar 

  • Doetsch F and Hen R 2005 Young and excitable: the function of new neurons in the adult mammalian brain; Curr. Opin. Neurobiol. 15 121–128

    CAS  PubMed  Google Scholar 

  • Domeniconi M, Hempstead B L and Chao M V 2007 Pro-NGF secreted by astrocytes promotes motor neuron cell death; Mol. Cell Neurosci. 34 271–279

    CAS  PubMed  Google Scholar 

  • Ducray A, Krebs S H, Schaller B, Seiler R W, Meyer M and Widmer H R 2006 GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon; Brain Res. 1069 104–112

    CAS  PubMed  Google Scholar 

  • Eng L F, Ghirnikar R S and Lee Y L 2000 Glial fibrillary acidic protein: GFAP — thirty-one years (1969–2000); Neurochem. Res. 25 1439–1451

    CAS  PubMed  Google Scholar 

  • Escartin C, Brouillet E, Gubellini P, Trioulier Y, Jacquard C, Smadja C, Knott G W, Kerkerian-Le Goff L, Deglon N, Hantraye P and Bonvento G 2006 Ciliary neurotrophic factor activates astrocytes, redistributes their glutamate transporters GLAST and GLT-1 to raft microdomains, and improves glutamate handling in vivo; J. Neurosci. 26 5978–5989

    CAS  PubMed  Google Scholar 

  • Espejo M, Cutillas B, Arenas T E and Ambrosio S 2000 Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor; Cell Transplant 9 45–53

    CAS  PubMed  Google Scholar 

  • Eugenin E A, Osiecki K, Lopez L, Goldstein H, Calderon T M and Berman J W 2006 CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood — brain barrier: a potential mechanism of HIV-CNS invasion and neuroAIDS; J. Neurosci. 26 1098–1106

    CAS  PubMed  Google Scholar 

  • Ever L and Gaiano N 2005 Radial ‘glial’ progenitors: neurogenesis and signaling; Curr. Opin. Neurobiol. 115 29–33

    Google Scholar 

  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon P G and Carmignoto G 2004 Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors; Neuron 43 729–743

    CAS  PubMed  Google Scholar 

  • Fields R D and Stevens-Graham B 2002 New insights into neuron — glia communication; Science 298 556–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finkbeiner S M 1993 Glial calcium; Glia 9 83–104

    CAS  PubMed  Google Scholar 

  • Frohman E M, Monson N L, Lovett-Racke A E and Racke M K 2001 Autonomic regulation of neuroimmunological responses: implications for multiple sclerosis; J. Clin. Immunol. 21 61–73

    CAS  PubMed  Google Scholar 

  • Frohman E M, Vayuvegula B, Gupta S and van den Noort S 1988a Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms; Proc. Natl. Acad. Sci. USA 85 1292–1296

    CAS  PubMed  Google Scholar 

  • Frohman E M, Vayuvegula B, van den Noort S and Gupta S 1988b Norepinephrine inhibits gamma-interferon-induced MHC class II (Ia) antigen expression on cultured brain astrocytes; J. Neuroimmunol. 17 89–101

    CAS  PubMed  Google Scholar 

  • Gaiano N and Fishell G 2002 The role of notch in promoting glial and neural stem cell fates; Annu. Rev. Neurosci. 25 471–490

    CAS  PubMed  Google Scholar 

  • Gaiano N, Nye J S and Fishell G 2000 Radial glial identity is promoted by Notch1 signaling in the murine forebrain; Neuron 26 395–404

    CAS  PubMed  Google Scholar 

  • Gaughwin P M, Caldwell M A, Anderson J M, Schwiening C J, Fawcett J W, Compston D A and Chandran S 2006 Astrocytes promote neurogenesis from oligodendrocyte precursor cells; Eur. J. Neurosci. 23 945–956

    CAS  PubMed  Google Scholar 

  • Gee J R and Keller J N 2005 Astrocytes: regulation of brain homeostasis via apolipoprotein E; Int. J. Biochem. Cell Biol. 37 1145–1150

    CAS  PubMed  Google Scholar 

  • Givogri M I, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J and Bongarzone E R 2006 Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury; Dev. Neurosci. 28 81–91

    CAS  PubMed  Google Scholar 

  • Gorter J A, Van Vliet E A, Proper E A, De Graan P N, Ghijsen W E, Lopes Da Silva F H and Aronica E 2002 Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats; J. Comp. Neurol. 442 365–377

    CAS  PubMed  Google Scholar 

  • Gotz M and Barde Y A 2005 Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons; Neuron 46 369–372

    PubMed  Google Scholar 

  • Greferath U, Bennie A, Kourakis A, Bartlett P F, Murphy M and Barrett G L 2000 Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice; Eur. J. Neurosci. 12 885–893

    CAS  PubMed  Google Scholar 

  • Gronholm M, Teesalu T, Tyynela J, Piltti K, Bohling T, Wartiovaara K, Vaheri A and Carpen O 2005 Characterization of the NF2 protein merlin and the ERM protein ezrin in human, rat, and mouse central nervous system; Mol. Cell. Neurosci. 28 683–693

    PubMed  Google Scholar 

  • Grosche J, Kettenmann H and Reichenbach A 2002 Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons; J. Neurosci. Res. 68 138–149

    CAS  PubMed  Google Scholar 

  • Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A and Kettenmann H 1999 Microdomains for neuron — glia interaction: parallel fiber signaling to Bergmann glial cells; Nat. Neurosci. 2 139–143

    CAS  PubMed  Google Scholar 

  • Haddock G, Cross A K, Plumb J, Surr J, Buttle D J, Bunning R A and Woodroofe M N 2006 Expression of ADAMTS-1,-4,-5 and TIMP-3 in normal and multiple sclerosis CNS white matter; Mult. Scler. 12 386–396

    CAS  PubMed  Google Scholar 

  • Haegele L, Ingold B, Naumann H, Tabatabai G, Ledermann B and Brandner S 2003 Wnt signalling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression; Mol. Cell. Neurosci. 24 696–708

    CAS  PubMed  Google Scholar 

  • Harrington A W, Leiner B, Blechschmitt C, Arevalo J C, Lee R, Morl K, Meyer M, Hempstead B L, Yoon S O and Giehl K M 2004 Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury; Proc. Natl. Acad. Sci. USA 101 6226–6230

    CAS  PubMed  Google Scholar 

  • Hartfuss E, Galli R, Heins N and Gotz M 2001 Characterization of CNS precursor subtypes and radial glia; Dev. Biol. 229 15–30

    CAS  PubMed  Google Scholar 

  • Haydon PG and Carmignoto G 2006 Astrocyte control of synaptic transmission and neurovascular coupling; Physiol. Rev. 86 1009–1031

    CAS  PubMed  Google Scholar 

  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker K L, Hack M A, Chapouton P, Barde Y A and Gotz M 2002 Glial cells generate neurons: the role of the transcription factor Pax6; Nat. Neurosci. 5 308–315

    CAS  PubMed  Google Scholar 

  • Hermann D M, Kilic E, Kugler S, Isenmann S and Bahr M 2001 Adenovirus-mediated GDNF and CNTF pretreatment protects against striatal injury following transient middle cerebral artery occlusion in mice; Neurobiol. Dis. 8 655–666

    CAS  PubMed  Google Scholar 

  • Hermel E, Gafni J, Propp S S, Leavitt B R, Wellington C L, Young J E, Hackam A S, Logvinova A V, Peel A L, Chen S F, Hook V, Singaraja R, Krajewski S, Goldsmith P C, Ellerby H M, Hayden M R, Bredesen D E and Ellerby L M 2004 Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease; Cell Death Differ. 11 424–438

    CAS  PubMed  Google Scholar 

  • Hevner R F 2006 From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development; Mol. Neurobiol. 33 33–50

    CAS  PubMed  Google Scholar 

  • Hevner R F, Hodge R D, Daza R A and Englund C 2006 Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus; Neurosci. Res. 55 223–233

    CAS  PubMed  Google Scholar 

  • Hou J G, Lin L F and Mytilineou C 1996 Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium; J. Neurochem. 66 74–82

    CAS  PubMed  Google Scholar 

  • Howland D S, Liu J, She Y, Goad B, Maragakis N J, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, DeGennaro L J, Cleveland D W and Rothstein J D 2002 Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS); Proc. Natl. Acad. Sci. USA 99 1604–1609

    CAS  PubMed  Google Scholar 

  • Hudgins S N and Levison S W 1998 Ciliary neurotrophic factor stimulates astroglial hypertrophy in vivo and in vitro; Exp. Neurol. 150 171–182

    CAS  PubMed  Google Scholar 

  • Iadecola C 2004 Neurovascular regulation in the normal brain and in Alzheimer’s disease; Nat. Rev. Neurosci. 5 347–360

    CAS  PubMed  Google Scholar 

  • Ihrie R A and Alvarez-Buylla A 2008 Cells in the astroglial lineage are neural stem cells; Cell Tissue Res. 331 179–191

    PubMed  Google Scholar 

  • Jagasia R, Song H, Gage F H and Lie D C 2006 New regulators in adult neurogenesis and their potential role for repair; Trends Mol. Med. 12 400–405

    CAS  PubMed  Google Scholar 

  • Janzer R C and Raff M C 1987 Astrocytes induce blood — brain barrier properties in endothelial cells; Nature (London) 325 253–257

    CAS  Google Scholar 

  • Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A and Chandran S 2004 Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells; Lancet 364 172–178

    CAS  PubMed  Google Scholar 

  • Jourdain P, Bergersen L H, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V and Volterra A 2007 Glutamate exocytosis from astrocytes controls synaptic strength; Nat. Neurosci. 10 331–339

    CAS  PubMed  Google Scholar 

  • Kang T C, Kim D S, Kwak S E, Kim J E, Won M H, Kim D W, Choi S Y and Kwon O S 2006 Epileptogenic roles of astroglial death and regeneration in the dentate gyrus of experimental temporal lobe epilepsy; Glia 54 258–271

    PubMed  Google Scholar 

  • Kim J H, Park J A, Lee S W, Kim W J, Yu Y S and Kim K W 2006 Blood — neural barrier: intercellular communication at gliovascular interface; J. Biochem. Mol. Biol. 39 339–345

    CAS  PubMed  Google Scholar 

  • Kimelberg H K 1995 Receptors on astrocytes — what possible functions?; Neurochem. Int. 26 27–40

    CAS  PubMed  Google Scholar 

  • Koehler R C, Gebremedhin D and Harder D R 2006 Role of astrocytes in cerebrovascular regulation; J. Appl. Physiol. 100 307–317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlov A S, Angulo M C, Audinat E and Charpak S 2006 Target cell-specific modulation of neuronal activity by astrocytes; Proc. Natl. Acad. Sci. USA 103 10058–10063

    CAS  PubMed  Google Scholar 

  • Kozlowski D A, Connor B, Tillerson J L, Schallert T and Bohn M C 2000 Delivery of a GDNF gene into the substantia nigra after a progressive 6-OHDA lesion maintains functional nigrostriatal connections; Exp. Neurol. 166 1–15

    CAS  PubMed  Google Scholar 

  • Kuffler S W, Nicholls J G and Orkand R K 1966 Physiological properties of glial cells in the central nervous system of amphibia; J. Neurophysiol. 29 768–787

    CAS  PubMed  Google Scholar 

  • Kuhn H G, Winkler J, Kempermann G, Thal L J and Gage F H 1997 Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain; J. Neurosci. 17 5820–5829

    CAS  PubMed  Google Scholar 

  • Kutsch O, Oh J, Nath A and Benveniste E N 2000 Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 tat in astrocytes; J. Virol. 74 9214–9221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lad S P, Peterson D A, Bradshaw R A and Neet K E 2003 Individual and combined effects of TrkA and p75NTR nerve growth factor receptors. A role for the high affinity receptor site; J. Biol. Chem. 278 24808–24817

    CAS  PubMed  Google Scholar 

  • Lai A Y and Todd K G 2006 Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines; Glia 53 809–816

    PubMed  Google Scholar 

  • Lalo U, Pankratov Y, Kirchhoff F, North R A and Verkhratsky A 2006 NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes; J. Neurosci. 26 2673–2683

    CAS  PubMed  Google Scholar 

  • Landles C and Bates G P 2004 Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series; EMBO Rep. 5 958–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazovic J, Basu A, Lin H W, Rothstein R P, Krady J K, Smith M B and Levison S W 2005 Neuroinflammation and both cytotoxic and vasogenic edema are reduced in interleukin-1 type 1 receptor-deficient mice conferring neuroprotection; Stroke 36 2226–2231

    CAS  PubMed  Google Scholar 

  • Lee M Y, Deller T, Kirsch M, Frotscher M and Hofmann H D 1997 Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha expression in astrocytes and neurons of the fascia dentata after entorhinal cortex lesion; J. Neurosci. 17 1137–1146

    CAS  PubMed  Google Scholar 

  • Librizzi L, Mazzetti S, Pastori C, Frigerio S, Salmaggi A, Buccellati C, Di Gennaro A, Folco G, Vitellaro-Zuccarello L and de Curtis M 2006 Activation of cerebral endothelium is required for mononuclear cell recruitment in a novel in vitro model of brain inflammation; Neuroscience 137 1211–1219

    CAS  PubMed  Google Scholar 

  • Lim D A and Alvarez-Buylla A 1999 Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis; Proc. Natl. Acad. Sci. USA 96 7526–7531

    CAS  PubMed  Google Scholar 

  • Lin T N, Wang P Y, Chi S I and Kuo J S 1998 Differential regulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha (CNTFR alpha) expression following focal cerebral ischemia; Brain Res. Mol. Brain Res. 55 71–80

    CAS  PubMed  Google Scholar 

  • Liu J S, Zhao M L, Brosnan C F and Lee S C 2001 Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions; Am. J. Pathol. 158 2057–2066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Logan C Y and Nusse R 2004 The Wnt signaling pathway in development and disease; Annu. Rev. Cell. Dev. Biol. 20 781–810

    CAS  PubMed  Google Scholar 

  • Loo D T, Althoen M C and Cotman C W 1995 Differentiation of serum-free mouse embryo cells into astrocytes is accompanied by induction of glutamine synthetase activity; J. Neurosci. Res. 42 184–191

    CAS  PubMed  Google Scholar 

  • Ma D K, Ming G L and Song H 2005 Glial influences on neural stem cell development: cellular niches for adult neurogenesis; Curr. Opin. Neurobiol. 15 514–520

    CAS  PubMed  Google Scholar 

  • Magistretti P J and Pellerin L 1996 Cellular bases of brain energy metabolism and their relevance to functional brain imaging: evidence for a prominent role of astrocytes; Cereb. Cortex 6 50–61

    CAS  PubMed  Google Scholar 

  • Malatesta P, Appolloni I and Calzolari F 2008 Radial glia and neural stem cells; Cell Tissue Res. 331 165–178.

    PubMed  Google Scholar 

  • Malatesta P, Hack M A, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F and Gotz M 2003 Neuronal or glial progeny: regional differences in radial glia fate; Neuron 37 751–764

    CAS  PubMed  Google Scholar 

  • Malatesta P, Hartfuss E and Gotz M 2000 Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage; Development 127 5253–5263

    CAS  PubMed  Google Scholar 

  • Martin E D, Fernandez M, Perea G, Pascual O, Haydon P G, Araque A and Cena V 2007 Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission; Glia 55 36–45

    PubMed  Google Scholar 

  • Meda L, Baron P and Scarlato G 2001 Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins; Neurobiol. Aging 22 885–893

    CAS  PubMed  Google Scholar 

  • Meme W, Calvo C F, Froger N, Ezan P, Amigou E, Koulakoff A and Giaume C 2006 Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid; FASES. J. 20 494–496

    CAS  Google Scholar 

  • Mendonca D M, Chimelli L and Martinez A M 2006 Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis; Neurosci. Lett. 404 315–319

    CAS  PubMed  Google Scholar 

  • Migheli A, Cordera S, Bendotti C, Atzori C, Piva R and Schiffer D 1999 S-100beta protein is upregulated in astrocytes and motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis; Neurosci. Lett. 261 25–28

    CAS  PubMed  Google Scholar 

  • Ming G L and Song H 2005 Adult neurogenesis in the mammalian central nervous system; Annu. Rev. Neurosci. 28 223–250

    CAS  PubMed  Google Scholar 

  • Molina-Holgado E, Arevalo-Martin A, Ortiz S, Vela J M and Guaza C 2002 Theiler’s virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10; Neurosci. Lett. 324 237–241

    CAS  PubMed  Google Scholar 

  • Mothet J P, Parent A T, Wolosker H, Brady R O, Jr, Linden D J, Ferris C D, Rogawski M A and Snyder S H 2000 D-serine is an endogenous ligand for the glycine site of the N-methyl-Daspartate receptor; Proc. Natl. Acad. Sci. USA 97 4926–4931

    CAS  PubMed  Google Scholar 

  • Mouser P E, Head E, Ha K H and Rohn T T 2006 Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain; Am. J. Pathol. 168 936–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura A, Johns E J, Imaizumi A, Abe T and Kohsaka T 1998 Regulation of tumour necrosis factor and interleukin-6 gene transcription by beta2-adrenoceptor in the rat astrocytes; J. Neuroimmunol. 88 144–153

    CAS  PubMed  Google Scholar 

  • Naumann T, Steup A, Schnell O, Schubert K O, Zhi Q, Guijarro C, Kirsch M and Hofmann H D 2006 Altered neuronal responses and regulation of neurotrophic proteins in the medial septum following fimbria — fornix transection in CNTF-and leukaemia inhibitory factor — deficient mice; Eur. J. Neurosci. 24 2223–2232

    PubMed  Google Scholar 

  • Navarrete M and Araque A 2008 Endocannabinoids mediate neuron-astrocyte communication; Neuron 57 883–893

    CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom B and Goldman S A 2003 New roles for astrocytes: redefining the functional architecture of the brain; Trends Neurosci. 26 523–530

    CAS  PubMed  Google Scholar 

  • Newman E A 2001 Propagation of intercellular calcium waves in retinal astrocytes and Muller cells; J. Neurosci. 21 2215–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman E A 2003 New roles for astrocytes: regulation of synaptic transmission; Trends Neurosci. 26 536–542

    CAS  PubMed  Google Scholar 

  • Noctor S C, Flint A C, Weissman T A, Dammerman R S and Kriegstein A R 2001 Neurons derived from radial glial cells establish radial units in neocortex; Nature (London) 409 714–720

    CAS  Google Scholar 

  • Norenberg M D 1979 Distribution of glutamine synthetase in the rat central nervous system; J. Histochem. Cytochem. 27 756–762

    CAS  PubMed  Google Scholar 

  • Norris C M, Kadish I, Blalock E M, Chen K C, Thibault V, Porter N M, Landfield P W and Kraner S D 2005 Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models; J. Neurosci. 25 4649–4658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkubo Y, Uchida A O, Shin D, Partanen J and Vaccarino F M 2004 Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse; J. Neurosci. 24 6057–6069

    CAS  PubMed  Google Scholar 

  • Onyango I G, Tuttle J B and Bennett J P, Jr. 2005 Brain-derived growth factor and glial cell line-derived growth factor use distinct intracellular signaling pathways to protect PD cybrids from H2O2-induced neuronal death; Neurobiol. Dis. 20 141–154

    CAS  PubMed  Google Scholar 

  • Orkand R K, Nicholls J G and Kuffler S W 1966 Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia; J. Neurophysiol. 29 788–806

    CAS  PubMed  Google Scholar 

  • Palmer T D, Markakis E A, Willhoite A R, Safar F and Gage F H 1999 Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS; J. Neurosci. 19 8487–8497

    CAS  PubMed  Google Scholar 

  • Panatier A, Theodosis D T, Mothet J P, Touquet B, Pollegioni L, Poulain D A and Oliet S H 2006 Glia-derived D-serine controls NMDA receptor activity and synaptic memory; Cell 125 775–784

    CAS  PubMed  Google Scholar 

  • Parnavelas J G and Nadarajah B 2001 Radial glial cells; are they really glia?; Neuron 31 881–884

    CAS  PubMed  Google Scholar 

  • Parri H R, Gould T M and Crunelli V 2001 Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation; Nat. Neurosci. 4 803–812

    CAS  PubMed  Google Scholar 

  • Pascual O, Casper K B, Kubera C, Zhang J, Revilla-Sanchez R, Sul J Y, Takano H, Moss S J, McCarthy K and Haydon PG 2005 Astrocytic purinergic signaling coordinates synaptic networks; Science 310 113–116

    CAS  PubMed  Google Scholar 

  • Pasti L, Volterra A, Pozzan T and Carmignoto G 1997 Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ; J. Neurosci. 17 7817–7830

    CAS  PubMed  Google Scholar 

  • Pedraza C E, Podlesniy P, Vidal N, Arevalo J C, Lee R, Hempstead B, Ferrer I, Iglesias M and Espinet C 2005 Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR; Am. J. Pathol. 166 533–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pehar M, Cassina P, Vargas M R, Castellanos R, Viera L, Beckman J S, Estevez A G and Barbeito L 2004 Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis; J. Neurochem. 89 464–473

    CAS  PubMed  Google Scholar 

  • Peng S, Wuu J, Mufson E J and Fahnestock M 2004 Increased proNGF levels in subjects with mild cognitive impairment and mild Alzheimer disease; J. Neuropathol. Exp. Neurol. 63 641–649

    CAS  PubMed  Google Scholar 

  • Perea G and Araque A 2007 Astrocytes potentiate transmitter release at single hippocampal synapses; Science 317 1083–1086

    CAS  PubMed  Google Scholar 

  • Pillai R, Scintu F, Scorciapino L, Carta M, Murru L, Biggio G, Cabras S, Reali C and Sogos V 2006 Human astrocytes can be induced to differentiate into cells with neuronal phenotype; Exp. Cell Res. 312 2336–2346

    CAS  PubMed  Google Scholar 

  • Porter J T and McCarthy K D 1996 Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals; J. Neurosci. 16 5073–5081

    CAS  PubMed  Google Scholar 

  • Porter J T and McCarthy K D 1997 Astrocytic neurotransmitter receptors in situ and in vivo; Prog. Neurobiol. 51 439–455

    CAS  PubMed  Google Scholar 

  • Rakic P 2003a Developmental and evolutionary adaptations of cortical radial glia; Cereb. Cortex 13 541–549

    PubMed  Google Scholar 

  • Rakic P 2003b Elusive radial glial cells: historical and evolutionary perspective; Glia 43 19–32

    PubMed  Google Scholar 

  • Ransohoff R M and Estes M L 1991 Astrocyte expression of major histocompatibility complex gene products in multiple sclerosis brain tissue obtained by stereotactic biopsy; Arch. Neurol. 48 1244–1246

    CAS  PubMed  Google Scholar 

  • Reynolds B A and Weiss S 1992 Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system; Science 255 1707–1710

    CAS  PubMed  Google Scholar 

  • Richards L J, Kilpatrick T J and Bartlett P F 1992 De novo generation of neuronal cells from the adult mouse brain; Proc. Natl. Acad. Sci. USA 89 8591–8595

    CAS  PubMed  Google Scholar 

  • Ridet J L, Malhotra S K, Privat A and Gage F H 1997 Reactive astrocytes: cellular and molecular cues to biological function; Trends Neurosci. 20 570–577

    CAS  PubMed  Google Scholar 

  • Rose J W, Hill K E, Watt H E and Carlson N G 2004 Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion; J. Neuroimmunol. 149 40–49

    CAS  PubMed  Google Scholar 

  • Rosen D R, Siddique T, Patterson D, Figlewicz D A, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng H X and et al 1993 Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis; Nature (London) 362 59–62

    CAS  Google Scholar 

  • Roskams T, Cassiman D, De Vos R and Libbrecht L 2004 Neuroregulation of the neuroendocrine compartment of the liver; Anat. Rec. A Discov. Mol. Cell Evol. Biol. 280 910–923

    PubMed  Google Scholar 

  • Saez E T, Pehar M, Vargas M R, Barbeito L and Maccioni R B 2006 Production of nerve growth factor by beta-amyloid-stimulated astrocytes induces p75NTR-dependent tau hyperphosphorylation in cultured hippocampal neurons; J. Neurosci. Res. 84 1098–1106

    CAS  PubMed  Google Scholar 

  • Sasaki S, Komori T and Iwata M 2000 Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis; Acta Neuropathol. (Berl.) 100 138–144

    CAS  Google Scholar 

  • Schaller B, Andres R H, Huber A W, Meyer M, Perez-Bouza A, Ducray A D, Seiler R W and Widmer H R 2005 Effect of GDNF on differentiation of cultured ventral mesencephalic dopaminergic and non-dopaminergic calretinin-expressing neurons; Brain Res. 1036 163–172

    CAS  PubMed  Google Scholar 

  • Schmid R S, McGrath B, Berechid B E, Boyles B, Marchionni M, Sestan N and Anton E S 2003 Neuregulin 1-erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex; Proc. Natl. Acad. Sci. USA 100 4251–4256

    CAS  PubMed  Google Scholar 

  • Schousboe A and Waagepetersen H S 2005 Role of astrocytes in glutamate homeostasis: implications for excitotoxicity; Neurotox. Res. 8 221–225

    CAS  PubMed  Google Scholar 

  • Semkova I, Haberlein C and Krieglstein J 1999 Ciliary neurotrophic factor protects hippocampal neurons from excitotoxic damage; Neurochem. Int. 35 1–10

    CAS  PubMed  Google Scholar 

  • Shields D C, Schaecher K E, Saido T C and Banik N L 1999 A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain; Proc. Natl. Acad. Sci. USA 96 11486–11491

    CAS  PubMed  Google Scholar 

  • Shin J Y, Fang Z H, Yu Z X, Wang C E, Li S H and Li X J 2005 Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity; J. Cell Biol. 171 1001–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel G J and Chauhan N B 2000 Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain; Brain Res. Brain Res. Rev. 33 199–227

    CAS  PubMed  Google Scholar 

  • Smart I H 1973 Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures; J. Anat. 116 67–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smart I H 1976 A pilot study of cell production by the ganglionic eminences of the developing mouse brain; J. Anat. 121 71–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Stevens C F and Gage F H 2002 Astroglia induce neurogenesis from adult neural stem cells; Nature (London) 417 39–44

    CAS  Google Scholar 

  • Song H J, Stevens C F and Gage F H 2002 Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons; Nat. Neurosci. 5 438–445

    CAS  PubMed  Google Scholar 

  • Sospedra M and Martin R 2005 Immunology of multiple sclerosis; Annu. Rev. Immunol. 23 683–747

    CAS  PubMed  Google Scholar 

  • Steiner J, Bernstein H G, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G and Bogerts B 2007 Evidence for a wide extraastrocytic distribution of S100B in human brain; BMC Neurosci. 8 2–10

    PubMed  PubMed Central  Google Scholar 

  • Steinman L 1996 Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system; Cell 85 299–302

    CAS  PubMed  Google Scholar 

  • Stevens E R, Esguerra M, Kim P M, Newman E A, Snyder S H, Zahs K R and Miller R F 2003 D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors; Proc. Natl. Acad. Sci. USA 100 6789–6794

    CAS  PubMed  Google Scholar 

  • Svendsen C N 2002 The amazing astrocyte; Nature (London) 417 29–32

    CAS  Google Scholar 

  • Takano T, Tian G F, Peng W, Lou N, Libionka W, Han X and Nedergaard M 2006 Astrocyte-mediated control of cerebral blood flow; Nat. Neurosci. 9 260–267

    CAS  PubMed  Google Scholar 

  • Tanuma N, Sakuma H, Sasaki A and Matsumoto Y 2006 Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis; Acta Neuropathol. (Berl.) 112 195–204

    CAS  Google Scholar 

  • Trentin A G 2006 Thyroid hormone and astrocyte morphogenesis; J. Endocrinol. 189 189–197

    CAS  PubMed  Google Scholar 

  • Tuppo E E and Arias H R 2005 The role of inflammation in Alzheimer’s disease; Int. J. Biochem. Cell Biol. 37 289–305

    CAS  PubMed  Google Scholar 

  • Ullian E M, Christopherson K S and Barres B A 2004 Role for glia in synaptogenesis; Glia 47 209–216

    PubMed  Google Scholar 

  • Ulrich R, Baumgartner W, Gerhauser I, Seeliger F, Haist V, Deschl U and Alldinger S 2006 MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis; J. Neuropathol. Exp. Neurol. 65 783–793

    CAS  PubMed  Google Scholar 

  • Vanoni C, Massari S, Losa M, Carrega P, Perego C, Conforti L and Pietrini G 2004 Increased internalisation and degradation of GLT-1 glial glutamate transporter in a cell model for familial amyotrophic lateral sclerosis (ALS); J. Cell Sci. 117 5417–5426

    CAS  PubMed  Google Scholar 

  • Ventura R and Harris K M 1999 Three-dimensional relationships between hippocampal synapses and astrocytes; J. Neurosci. 19 6897–6906

    CAS  PubMed  Google Scholar 

  • Verkhratsky A and Kettenmann H 1996 Calcium signalling in glial cells; Trends Neurosci. 19 346–352

    CAS  PubMed  Google Scholar 

  • Verkhratsky A and Kirchhoff F 2007 NMDA receptors in glia; Neuroscientist 13 28–37

    CAS  PubMed  Google Scholar 

  • Verkhratsky A and Toescu E C 1998 Calcium and neuronal ageing; Trends Neurosci. 21 2–7

    CAS  PubMed  Google Scholar 

  • Vesce S, Bezzi P and Volterra A 1999 The active role of astrocytes in synaptic transmission; Cell Mol. Life Sci. 56 991–1000

    CAS  PubMed  Google Scholar 

  • Volosin M, Song W, Almeida R D, Kaplan D R, Hempstead B L and Friedman W J 2006 Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins; J. Neurosci. 26 7756–7766

    CAS  PubMed  Google Scholar 

  • Volterra A and Meldolesi J 2005 Astrocytes, from brain glue to communication elements: the revolution continues; Nat. Rev. Neurosci. 6 626–640

    CAS  PubMed  Google Scholar 

  • Volterra A and Steinhauser C 2004 Glial modulation of synaptic transmission in the hippocampus; Glia 47 249–257

    PubMed  Google Scholar 

  • Wolosker H, Blackshaw S and Snyder S H 1999 Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-Nmethyl-D-aspartate neurotransmission; Proc. Natl. Acad. Sci. USA 96 13409–13414

    CAS  PubMed  Google Scholar 

  • Woodman S E, Benveniste E N, Nath A and Berman J W 1999 Human immunodeficiency virus type 1 TAT protein induces adhesion molecule expression in astrocytes; J. Neurovirol. 5 678–684

    CAS  PubMed  Google Scholar 

  • Wozniak W 1999 Ependymal cells and astrocytes generate neurons; Folia Morphol. (Warsz) 58 7–11.

    CAS  Google Scholar 

  • Yamanaka K, Chun S J, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann D H, Takahashi R, Misawa H and Cleveland D W 2008 Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis; Nat. Neurosci. 11 251–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita A, Makita K, Kuroiwa T and Tanaka K 2006 Glutamate transporters GLAST and EAAT4 regulate postischemic Purkinje cell death: an in vivo study using a cardiac arrest model in mice lacking GLAST or EAAT4; Neurosci. Res. 55 264–270

    CAS  PubMed  Google Scholar 

  • Yanagisawa M, Nakashima K, Ochiai W, Takizawa T, Setoguchi T, Uemura A, Takizawa M, Nobuhisa I and Taga T 2005 Fate redirection of hippocampal astrocytes toward neuronal lineage by aggregate culture; Neurosci. Res. 53 176–182

    PubMed  Google Scholar 

  • Ye J, Cao L, Cui R, Huang A, Yan Z, Lu C and He C 2004 The effects of ciliary neurotrophic factor on neurological function and glial activity following contusive spinal cord injury in the rats; Brain Res. 997 30–39

    CAS  PubMed  Google Scholar 

  • Yokota H, Yoshikawa M, Hirabayashi H, Nakase H, Uranishi R, Nishimura F, Sugie Y, Ishizaka S and Sakaki T 2005 Expression of ciliary neurotrophic factor (CNTF), CNTF receptor alpha (CNTFR-alpha) following experimental intracerebral hemorrhage in rats; Neurosci. Lett. 377 170–175

    CAS  PubMed  Google Scholar 

  • Yoon K, Nery S, Rutlin M L, Radtke F, Fishell G and Gaiano N 2004 Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors; J. Neurosci. 24 9497–9506

    CAS  PubMed  Google Scholar 

  • Zeinstra E, Wilczak N and De Keyser J 2003 Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2; J. Neuroimmunol. 135 166–171

    CAS  PubMed  Google Scholar 

  • Zeinstra E, Wilczak N, Streefland C and De Keyser J 2000 Astrocytes in chronic active multiple sclerosis plaques express MHC class II molecules; Neuroreport 11 89–91

    CAS  PubMed  Google Scholar 

  • Zonta M, Angulo M C, Gobbo S, Rosengarten B, Hossmann K A, Pozzan T and Carmignoto G 2003 Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation; Nat. Neurosci. 6 43–50

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Seth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seth, P., Koul, N. Astrocyte, the star avatar: redefined. J Biosci 33, 405–421 (2008). https://doi.org/10.1007/s12038-008-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-008-0060-5

Keywords

Navigation