Skip to main content
Log in

Suppression of induced but not developmental apoptosis in Drosophila by Ayurvedic Amalaki Rasayana and Rasa-Sindoor

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Earlier we showed formulation-specific beneficial effects of dietary supplement of Ayurvedic Amalaki Rasayana (AR, a herbal formulation) and Rasa-Sindoor (RS, a mercury-based organo-metallic formulation) on various biological parameters in Drosophila, parallel to traditional Ayurvedic literature. These formulations also suppressed cell death and pathology in fly models of neurodegeneration. To understand basis of inhibition of apoptosis, we examined effects of AR and RS on induced and developmental apoptosis in Drosophila. Dietary AR or RS significantly reduced apoptosis induced by GMR-GAL4-, sev-GAL4- or hs-GAL4-directed expression of Rpr, Hid or Grim (RHG) pro-apoptotic proteins or by GMR-GAL4-directed DIAP1-RNAi, resulting in significant restoration of organism's viability and eye morphology. AR or RS supplement enhanced levels of inhibitor of apoptosis proteins, DIAP1 and DIAP2, and of Bancal/Hrb57A, while the levels of RHG proteins and of initiator Dronc and effecter Drice caspases were reduced in non-apoptotic wild type as well as in RHG over-expressing tissues. Levels of Dronc or Drice remained unaffected in cells developmentally destined to die so that developmental apoptosis occurred normally. Elevated levels of DIAPs and reduced levels of RHG proteins and caspases reflect a more robust physiological state of AR or RS fed organisms allowing them to tolerate greater insults without triggering the cell-death response. Such homeostatic effects of these Rasayanas seem to contribute to ‘healthy ageing’, one of their effects suggested in traditional Ayurvedic practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abrams JM, White K, Fessler LI and Steller H 1993 Programmed cell death during Drosophila embryogenesis. Development 117 29–43

    CAS  PubMed  Google Scholar 

  • Aplin AC and Kaufman TC 1997 Homeotic transformation of legs to mouthparts by proboscipedia expression in Drosophila imaginal discs. Mech. Dev. 62 51–60

    Article  CAS  PubMed  Google Scholar 

  • Arya R and Lakhotia S 2008 Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones 13 509–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arya R and Lakhotia SC 2006 A simple nail polish imprint technique for examination of external morphology of Drosophila eyes. Curr. Sci. 90 1179–1180

    Google Scholar 

  • Arya R, Mallik M and Lakhotia SC 2007 Heat shock genes - integrating cell survival and death. J. Biosci. 32 595–610

    Article  CAS  PubMed  Google Scholar 

  • Baehrecke EH 2002 How death shapes life during development. Nat. Rev. Mol. Cell Biol. 3 779–787

    Article  CAS  PubMed  Google Scholar 

  • Berry DL and Baehrecke EH 2007 Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131 1137–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cakouros D, Daish TJ and Kumar S 2004 Ecdysone receptor directly binds the promoter of the Drosophila caspase dronc, regulating its expression in specific tissues. J. Cell Biol. 165 631–640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chih HW, Chiu HF, Tang KS, Chang FR and Wu YC 2001 Bullatacin, a potent antitumor annonaceous acetogenin, inhibits proliferation of human hepatocarcinoma cell line 2.2.15 by apoptosis induction. Life Sci. 69 1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Christiansen AE, Ding T, Fan Y, Graves HK, Herz HM, Lindblad JL and Bergmann A 2013 Non-cell autonomous control of apoptosis by ligand-independent Hedgehog signaling in Drosophila. Cell Death Differ. 20 302–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claveria C, Caminero E, Martinez AC, Campuzano S and Torres M 2002 GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J. 21 3327–3336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daish TJ, Mills K and Kumar S 2004 Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev. Cell 7 909–915

    Article  CAS  PubMed  Google Scholar 

  • Denton D, Aung-Htut MT and Kumar S 2013 Developmentally programmed cell death in Drosophila. Biochim. Biophys. Acta 1833 3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, et al. 2008 Inactivation of effecter caspases through nondegradative polyubiquitylation. Mol. Cell 32 540–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dorstyn L, Colussi PA, Quinn LM, Richardson H and Kumar S 1999 DRONC, an ecdysone-inducible Drosophila caspase. Proc. Natl. Acad. Sci. U S A 96 4307–4312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dorstyn L, Read S, Cakouros D, Huh JR, Hay BA and Kumar S 2002 The role of cytochrome c in caspase activation in Drosophila melanogaster cells. J. Cell Biol. 156 1089–1098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doumanis J, Quinn L, Richardson H and Kumar S 2001 STRICA, a novel Drosophila melanogaster caspase with an unusual serine/threonine-rich prodomain, interacts with DIAP1 and DIAP2. Cell Death Differ. 8 387–394

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi V, Anandan EM, Mony RS, Muraleedharan TS, Valiathan MS, Mutsuddi M and Lakhotia SC 2012 In vivo effects of traditional ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications. PLoS ONE 7 e37113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dwivedi V, Tripathi BK, Mutsuddi M and Lakhotia SC 2013 Ayurvedic Amalaki Rasayana and Rasa-Sindoor suppress neurodegeneration in fly models of Huntington’s and Alzheimer’s diseases. Curr. Sci. 105 1711–1723

    Google Scholar 

  • Edinger AL and Thompson CB 2004 Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16 663–669

    Article  CAS  PubMed  Google Scholar 

  • Fabian L and Brill JA 2012 Drosophila spermiogenesis: big things come from little packages. Spermatogenesis 2 197–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan Y and Bergmann A 2010 The cleaved-caspase-3 antibody is a marker of caspase-9-like DRONC activity in Drosophila. Cell Death Differ. 17 534–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farkas R and Mechler BM 2000 The timing of Drosophila salivary gland apoptosis displays an l(2)gl-dose response. Cell Death Differ. 7 89–101

    Article  CAS  PubMed  Google Scholar 

  • Freeman M 1996 Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87 651–660

    Article  CAS  PubMed  Google Scholar 

  • Fuchs Y and Steller H 2011 Programmed cell death in animal development and disease. Cell 147 742–758

    Article  CAS  PubMed  Google Scholar 

  • Goyal L, McCall K, Agapite J, Hartwieg E and Steller H 2000 Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19 589–597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harvey NL, Daish T, Mills K, Dorstyn L, Quinn LM, Read SH, Richardson H and Kumar S 2001 Characterization of the Drosophila caspase, DAMM. J. Biol. Chem. 276 25342–25350

    Article  CAS  PubMed  Google Scholar 

  • Hawkins CJ, Yoo SJ, Peterson EP, Wang SL, Vernooy SY and Hay BA 2000 The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J. Biol. Chem. 275 27084–27093

    CAS  PubMed  Google Scholar 

  • Hay BA and Guo M 2006 Caspase-dependent cell death in Drosophila. Annu. Rev. Cell Dev. Biol. 22 623–650

    Article  CAS  PubMed  Google Scholar 

  • Hays R, Wickline L and Cagan R 2002 Morgue mediates apoptosis in the Drosophila melanogaster retina by promoting degradation of DIAP1. Nat. Cell Biol. 4 425–431

  • Holley CL, Olson MR, Colon-Ramos DA and Kornbluth S 2002 Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat. Cell Biol. 4 439–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higami Y and Shimokawa I 2000 Apoptosis in the aging process. Cell Tissue Res. 1 125–132

    Article  Google Scholar 

  • Hongmei, Z. (2012). Extrinsic and intrinsic apoptosis signal pathway review. Apoptosis and Medicine, InTech http://dx.doi.org/ 10.5772/50129 .

  • Igaki T, Yamamoto-Goto Y, Tokushige N, Kanda H and Miura M 2002 Down-regulation of DIAP1 triggers a novel Drosophila cell death pathway mediated by dark and DRONC. J. Biol. Chem. 277 23103–23106

    Article  CAS  PubMed  Google Scholar 

  • Kornbluth S and White K 2005 Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J. Cell Sci. 118 1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Koto A, Kuranaga E and Miura M 2009 Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development. J. Cell Biol. 187 219–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S and Doumanis J 2000 The fly caspases. Cell Death Differ. 7 1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Kuranaga E and Miura M 2007 Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol. 17 135–144

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC 2013 In-depth basic science studies essential for revival of Ayurveda. AAM 2 58–60

    Google Scholar 

  • Leulier F, Ribeiro PS, Palmer E, Tenev T, Takahashi K, Robertson D, Zachariou A, Pichaud F, et al. 2006 Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery. Cell Death Differ. 13 1663–1674

    Article  CAS  PubMed  Google Scholar 

  • Lisi S, Mazzon I and White K 2000 Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154 669–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu B, Chen H-D and Lu H-G 2012 The relationship between apoptosis and aging. Adv. Biosci. Biotechnol. 3 705–711

    Article  Google Scholar 

  • Mallik M and Lakhotia SC 2009 The developmentally active and stress-inducible noncoding hsromega gene is a novel regulator of apoptosis in Drosophila. Genetics 183 831–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meier P, Silke J, Leevers SJ and Evan GI 2000 The Drosophila caspase DRONC is regulated by DIAP1. EMBO J. 19 598–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon N-S, Di Stefano L, Morris EJ, Patel R, White K, Dyson NJ and Perrimon N 2008 E2F and p53 Induce apoptosis independently during Drosophila development but intersect in the context of DNA damage. PLoS Genet. 4 e1000153

    Article  PubMed Central  PubMed  Google Scholar 

  • Muradian K and Schachtschabel DO 2001 The role of apoptosis in aging and age-related disease: update. Z. Gerontol. Geriatr. 6 441–446

    Article  Google Scholar 

  • Muro I, Hay BA and Clem RJ 2002 The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated, processed form of the apical caspase DRONC. J. Biol. Chem. 277 49644–49650

    Article  CAS  PubMed  Google Scholar 

  • Murthy KRS 2000 Ashtanga Hridaya (Sanskrit with English Translation) (Varanasi: Krishnadas Academy)

    Google Scholar 

  • Oshima K, Takeda M, Kuranaga E, Ueda R, Aigaki T, Miura M and Hayashi S 2006 IKK epsilon regulates F actin assembly and interacts with Drosophila IAP1 in cellular morphogenesis. Curr. Biol. 16 1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B and Bao JK 2012 Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 45 487–498

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan B 2014 Ayurveda and systems biology. AAM. 3 5–7

    Google Scholar 

  • Prasanth KV, Rajendra TK, Lal AK and Lakhotia SC 2000 Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci. 113 3485–3497

    CAS  PubMed  Google Scholar 

  • Quinn LM, Dorstyn L, Mills K, Colussi PA, Chen P, Coombe M, Abrams J, Kumar S, et al. 2000 An essential role for the caspase dronc in developmentally programmed cell death in Drosophila. J. Biol. Chem. 275 40416–40424

    Article  CAS  PubMed  Google Scholar 

  • Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y and Jacobson MD 1993 Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262 695–700

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar NV, Pillai MR and Kuttan R 2003 Induction of apoptosis in mouse and human carcinoma cell lines by Emblica officinalis polyphenols and its effect on chemical carcinogenesis. J. Exp. Clin. Cancer Res. 22 201–212

    CAS  PubMed  Google Scholar 

  • Ribeiro PS, Kuranaga E, Tenev T, Leulier F, Miura M and Meier P 2007 DIAP2 functions as a mechanism-based regulator of drICE that contributes to the caspase activity threshold in living cells. J. Cell Biol. 179 1467–1480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roos WP and Kaina B 2006 DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12 440–450

    Article  CAS  PubMed  Google Scholar 

  • Ryoo HD, Bergmann A, Gonen H, Ciechanover A and Steller H 2002 Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat. Cell Biol. 4 432–438

    Article  CAS  PubMed  Google Scholar 

  • Saumweber H, Symmons P, Kabisch R, Will H and Bonhoeffer F 1980 Monoclonal antibodies against chromosomal proteins of Drosophila melanogaster: establishment of antibody producing cell lines and partial characterization of corresponding antigens. Chromosoma 80 253–275

    Article  CAS  PubMed  Google Scholar 

  • Sharma PV 1994 Charaka Samhita (Sanskrit with English Translation) (Chaukhambha Orientalia: Varanasi)

  • Sharma S 1979 Rastarangini (Sanskrit with Hindi translation) (Varanasi: Motilal Benarasidas)

  • Singh RH 2009 Body, mind, spirit- Integrative medicine in Ayurveda Nature and Yoga (Varanasi, India: Chaukhamba Sanskrit Pratishthan)

    Google Scholar 

  • Singh SK, Chaudhary A, Rai D and Rai S 2009 Preparation and characterization of a mercury based Indian traditional drug Ras-Sindoor. Indian J. Tradit. Knowl. 8 346–351

    Google Scholar 

  • Sitaram B 2006 Bhavprakash of Bhavmisra (Sanskrit with English Translation and Notes) (Varanasi: Chaukhamba Orientalia)

  • Spreij TE 1971 Cell death during the development of the imaginal discs of Calliphora erythrocephala. Netherlands J. Zool. 21 221–264

    Article  Google Scholar 

  • Steller H 2008 Regulation of apoptosis in Drosophila. Cell Death Differ. 15 1132–1138

    Article  CAS  PubMed  Google Scholar 

  • Swain U, Sindhu KK, Boda U, Pothani S, Giridharan NV, Raghunath M and Rao KS 2011 Studies on the molecular correlates of genomic stability in rat brain cells following Amalakirasayana therapy. Mech. Ageing Dev. 133 112–117

    Article  PubMed  Google Scholar 

  • Tapadia M and Lakhotia SC 1997 Specific induction of the hsr omega locus of Drosophila melanogaster by amides. Chromosom. Res. 5 359–362

    Article  CAS  Google Scholar 

  • Thirunavukkarasu SV, Jayanthi M, Raja S and Venkataraman S 2013 Effect of Manasamitra Vatakam against aluminium induced learning and memory impairment of apoptosis in rat’s hippocampus and cortex. J. Drug Metab. Toxicol. 4 doi:10.4172/2157-7609.1000154

  • Valiathan S 2006 Ayurveda – putting the house in order. Curr. Sci. 90 5–6

    Google Scholar 

  • Vucic D, Kaiser WJ, Harvey AJ and Miller LK 1997 Inhibition of Reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc. Natl. Acad. Sci. U S A 94 10183–10188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wing JP, Zhou L, Schwartz LM and Nambu JR 1998 Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ. 5 930–939

    Article  CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr JF and Currie AR 1980 Cell death: the significance of apoptosis. Int. Rev. Cytol. 68 251–306

    CAS  PubMed  Google Scholar 

  • Xiao D, Zeng Y, Prakash L, Badmaev V, Majeed M and Singh SV 2011 Reactive oxygen species-dependent apoptosis by gugulipid extract of ayurvedic medicine plant commiphora mukul in human prostate cancer cells is regulated by c-Jun N-terminal kinase. Mol. Pharmacol. 79 499–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang XL, Khosravi-Far R, Chang HY and Baltimore D 1997 Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89 1067–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin VP and Thummel CS 2004 A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 101 8022–8027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin VP and Thummel CS 2006 Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin. Cell Dev. Biol. 16 237–243

    Article  Google Scholar 

  • Yoo SJ, Huh JR, Muro I, Yu H, Wang LJ, Wang SL, Feldman RMR, Clem RJ, et al. 2002 Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol. 4 416–424

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Lu Y, Wu Q, Yan J, Shi J and Liu J 2012 Role of cinnabar and realgar of WSHFD in protecting against LPS-induced neurotoxicity. J. Ethnopharmacol. 139 822–828

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Arya Vaidya Sala, Kottakal (Kerala, India), for providing the Amalaki Rasayana and Rasa-Sindoor formulations, and Prof MS Valiathan for initiating the coordinated studies on Science of Ayurveda. We thank Dr H Saumweber (Berlin, Germany) and Dr M Torres (Madrid, Spain) for providing the anti-Hrb57A and anti-Grim antibodies, respectively. We also thank the Drosophila Stock Centre at Bloomington for different fly stocks.

This work was supported in part by a grant (no. Prn.SA/ADV/Ayurveda/6/2006) from the Office of the Principal Scientific Advisor to Government of India (New Delhi) and by the Raja Ramanna Fellowship of the Department of Atomic Energy (Mumbai) to SCL. The Confocal Facility, established by the Department of Science & Technology, New Delhi, is supported by the Banaras Hindu University. VD is supported by research fellowship from University Grants Commission (New Delhi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Lakhotia.

Additional information

Corresponding editor: V Radha

[Dwivedi V, Tiwary S and Lakhotia SC 2015 Suppression of induced but not developmental apoptosis in Drosophila by Ayurvedic Amalaki Rasayana and Rasa-Sindoor. J. Biosci. 40 1–17] DOI 10.1007/s12038-015-9521-9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, V., Tiwary, S. & Lakhotia, S.C. Suppression of induced but not developmental apoptosis in Drosophila by Ayurvedic Amalaki Rasayana and Rasa-Sindoor . J Biosci 40, 281–297 (2015). https://doi.org/10.1007/s12038-015-9521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-015-9521-9

Keywords

Navigation