Skip to main content

Advertisement

Log in

Performance of WRF-Chem over Indian region: Comparison with measurements

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The aerosol mass concentrations over several Indian regions have been simulated using the online chemistry transport model, WRF-Chem, for two distinct seasons of 2011, representing the pre-monsoon (May) and post-monsoon (October) periods during the Indo–US joint experiment ‘Ganges Valley Aerosol Experiment (GVAX)’. The simulated values were compared with concurrent measurements. It is found that the model systematically underestimates near-surface BC mass concentrations as well as columnar Aerosol Optical Depths (AODs) from the measurements. Examining this in the light of the model-simulated meteorological parameters, we notice the model overestimates both planetary boundary layer height (PBLH) and surface wind speeds, leading to deeper mixing and dispersion and hence lower surface concentrations of aerosols. Shortcoming in simulating rainfall pattern also has an impact through the scavenging effect. It also appears that the columnar AODs are influenced by the unrealistic emission scenarios in the model. Comparison with vertical profiles of BC obtained from aircraft-based measurements also shows a systematic underestimation by the model at all levels. It is seen that concentration of other aerosols, viz., dust and sea-salt are closely linked with meteorological conditions prevailing over the region. Dust is higher during pre-monsoon periods due to the prevalence of north-westerly winds that advect dust from deserts of west Asia into the Indo-Gangetic plain. Winds and rainfall influence sea-salt concentrations. Thus, the unrealistic simulation of wind and rainfall leads to model simulated dust and sea-salt also to deviate from the real values; which together with BC also causes underperformance of the model with regard to columnar AOD. It appears that for better simulations of aerosols over Indian region, the model needs an improvement in the simulation of the meteorology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Babu S S and Moorthy K K 2002 Aerosol black carbon over a tropical coastal station in India; Geophys. Res. Lett. 29 13–1–13-4, doi: 10.1029/2002GL015662.

    Google Scholar 

  • Beegum S N, Moorthy K K, Babu S S, Satheesh S K, Vinoj V, Badarinath K, Safai P, Devara P, Singh S, Vinod D. U and Pant P 2009 Spatial distribution of aerosol black carbon over India during pre-monsoon season; Atmos. Environ. 43 1071–1078, doi: 10.1016/j.atmosenv.2008.11.042.

    Article  Google Scholar 

  • Bollasina M A, Ming Y and Ramaswamy V 2011 Anthropogenic aerosols and the weakening of the south Asian summer monsoon; Science 334 502–505, doi: 10.1126/science.1204994.

    Article  Google Scholar 

  • Chakraborty A, Satheesh S K, Nanjundiah R S and Srinivasan J 2004 Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model; Ann. Geophys. 22 1421–1434, doi: 10.5194/angeo-22-1421-2004.

    Article  Google Scholar 

  • Chin M, Ginoux P, Kinne S, Torres O, Holben B N, Duncan B N, Martin R V, Logan J A, Higurashi A and Nakajima T 2002 Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements; J. Atmos. Sci. 59 461–483, doi: 10.1175/15200469(2002)059%3C0461:TAOTFT%3E2.0.CO;2.

  • Chin M, Diehl T, Dubovik O, Eck T F, Holben B N, Sinyuk A and Streets D G 2009 Light absorption by pollution, dust, and biomass burning aerosols: A global model study and evaluation with aeronet measurements; Ann. Geophys. 27 3439–3464, http://www.ann-geophys.net/27/3439/2009/, doi: 10.5194/angeo-27-3439-2009.

    Article  Google Scholar 

  • Chung C E, Ramanathan V and Kiehl J T 2002 Effects of the south Asian absorbing haze on the northeast monsoon and surface-air heat exchange; J. Climate 15 2462–2476, doi: 10.1175/1520-0442(2002)015%3C2462:EOTSAA%3E2.0.CO;2.

  • Cooke W, Liousse C, Cachier H and Feichter J 1999 Construction of a 1×1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the echam4 model; J. Geophys. Res. 104 22,137–22,162, doi: 10.1029/1999JD900187.

    Article  Google Scholar 

  • Dumka U, Moorthy K K, Kumar R, Hegde P, Sagar R, Pant P, Singh N and Babu S S 2010 Characteristics of aerosol black carbon mass concentration over a high altitude location in the central Himalayas from multi-year measurements; Atmos. Res. 96 510–521, doi: 10.1016/j.atmosres.2009.12.010.

    Article  Google Scholar 

  • Emmons L K, Walters S, Hess P G, Lamarque J F, Pfister G G, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum S L and Kloster S 2010 Description and evaluation of the model for Ozone and related chemical tracers, version 4 (MOZART-4); Geoscientific Model Development 3 43–67. doi, doi: 10.5194/gmd-3-43-2010.

    Article  Google Scholar 

  • Freitas S R, Longo K M, Alonso M F, Pirre M, Marecal V, Grell G, Stockler R, Mello R F and Sánchez Gácita M 2011 Prep-chem-src 1.0: A preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models; Geoscientific Model Development 4 419–433, http://www.geosci-model-dev.net/4/419/2011/, doi: 10.5194/gmd-4-419-2011.

    Article  Google Scholar 

  • Ganguly D, Rasch P J, Wang H and Yoon J H 2012 Climate response of the south Asian monsoon system to anthropogenic aerosols; J. Geophys. Res.: Atmospheres 117, doi: 10.1029/2012JD017508.

  • Gautam R, Hsu N, Lau K and Kafatos M 2009 Aerosol and rainfall variability over the Indian monsoon region: Distributions, trends and coupling; J. Geophys. Res.: Atmospheres 27 3691–3703, doi: 10.5194/angeo-27-3691-2009.

    Google Scholar 

  • Ginoux P, Chin M, Tegen I, Prospero J M, Holben B, Dubovik O and Lin S J 2001 Sources and distributions of dust aerosols simulated with the gocart model; J. Geophys. Res.: Atmospheres 106 20,255–20,273, doi: 10.1029/2000JD000053.

    Article  Google Scholar 

  • Haywood J and Boucher O 2000 Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review; Rev. Geophys. 38 513–543, doi: 10.1029/1999RG000078.

    Article  Google Scholar 

  • Haywood J M and Ramaswamy V 1998 Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols; J. Geophys. Res.: Atmospheres 103 6043–6058, doi: 10.1029/97JD03426.

    Article  Google Scholar 

  • Herman J R, Bhartia P K, Torres O, Hsu C, Seftor C and Celarier E 1997 Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data; J. Geophys. Res.: Atmospheres 102 16,911–16,922, doi: 10.1029/96JD03680.

    Article  Google Scholar 

  • Janjić Z I 2002 Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model; NCEP Office Note, 437, 61.

  • Jethva H, Satheesh S K and Srinivasan J 2007 Evaluation of moderate-resolution imaging spectroradiometer (MODIS) collection 004 (c004) aerosol retrievals at Kanpur, Indo-Gangetic basin; J. Geophys. Res.: Atmospheres 112, doi: 10.1029/2006JD007929.

  • Jethva H, Satheesh S, Srinivasan J and Moorthy K 2009 How good is the assumption about visible surface reflectance in MODIS aerosol retrieval over land? A comparison with aircraft measurements over an urban site in India; Geosci. Remote Sens. IEEE Trans. 47, doi: 10.1109/TGRS.2008.2010221.

  • Jones A M and Harrison R M 2004 The effects of meteorological factors on atmospheric bioaerosol concentrations: A review; Sci. Total Environ. 326 151–180, doi: 10.1016/j.scitotenv.2003.11.021.

    Article  Google Scholar 

  • Junker C and Liousse C 2008 A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997; Atmos. Chem. Phys. 8 1195–1207, http://www.atmos-chem-phys.net/8/1195/2008/, doi: 10.5194/acp-8-1195-2008.

    Article  Google Scholar 

  • Kahn R A, Garay M J, Nelson D L, Yau K K, Bull M A, Gaitley B J, Martonchik J V and Levy R C 2007 Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies; J. Geophys. Res.: Atmospheres 112, doi: 10.1029/2006JD008175.

  • Kaufman Y J, Tanré D, Boucher O and et al. 2002 A satellite view of aerosols in the climate system; Nature 419 215–223, doi: 10.1038/nature01091.

    Article  Google Scholar 

  • Kiran R V, Rajeevan M, Vijaya Bhaskara Rao S and Prabhakara Rao N 2009 Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data; Geophys. Res. Lett. 36, doi: 10.1029/2008GL037135.

  • Krishnamurti T N, Chakraborty A, Martin A, Lau W K, Kim K M, Sud Y and Walker G 2009 Impact of Arabian Sea pollution on the Bay of Bengal winter monsoon rains; J. Geophys. Res.: Atmospheres 114, doi: 10.1029/2008JD010679.

  • Kumar R, Naja M, Pfister G G, Barth M C and Brasseur G P 2011 Simulations over south Asia using the weather research and forecasting model with chemistry (WRF-Chem): Set-up and meteorological evaluation; Geoscientific Model Development Discussions 4 3067–3125, doi: 10.5194/gmdd-4-3067-2011.

    Article  Google Scholar 

  • Kumar R, Naja M, Pfister G G, Barth M C, Wiedinmyer C and Brasseur G P 2012 Simulations over south Asia using the weather research and forecasting model with chemistry (WRF-Chem): Chemistry evaluation and initial results; Geoscientific Model Development 5 619–648, doi: 10.5194/gmd-5-619-2012.

    Article  Google Scholar 

  • Lau K, Kim M and Kim K 2006 Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan plateau; Clim. Dyn. 26 855–864, doi: 10.1007/s00382-006-0114-z.

    Article  Google Scholar 

  • Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R and Eck T F 2010 Global evaluation of the collection 5 MODIS dark-target aerosol products over land; Atmospheric Chemistry and Physics Discussions 10 14,815–14,873, doi: 10.5194/acpd-1014815-2010.

    Article  Google Scholar 

  • Lohmann U and Feichter J 2005 Global indirect aerosol effects: A review; Atmos. Chem. Phys. 5 715–737, doi: 10.5194/acp-5-715-2005.

    Article  Google Scholar 

  • Lohmann U and Lesins G 2002 Stronger constraints on the anthropogenic indirect aerosol effect; Science 298 1012–1015, doi: 10.1126/science.1075405.

    Article  Google Scholar 

  • Lu Z, Zhang Q and Streets D G 2011 Sulfur dioxide and primary carbonaceous aerosol emissions in china and india, 1996–2010; Atmos. Chem. Phys. 11 9839–9864, http://www.atmos-chem-phys.net/11/9839/2011/, doi: 10.5194/acp-119839-2011.

    Article  Google Scholar 

  • Meehl G A, Arblaster J M and Collins W D 2008 Effects of black carbon aerosols on the Indian monsoon; J. Climate 21 2869–2882, doi: 10.1175/2007JCLI1777.1.

    Article  Google Scholar 

  • Menon S, Hansen J, Nazarenko L and Luo Y 2002 Climate effects of black carbon aerosols in China and India; Science 297 2250–2253, doi: 10.1126/science.1075159.

    Article  Google Scholar 

  • Mlawer E J, Taubman S J, Brown P D, Iacono M J and Clough S A 1997 Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave; J. Geophys. Res.: Atmospheres 102 16,663–16,682, doi: 10.1029/97JD00237.

    Article  Google Scholar 

  • Moorthy K K and Satheesh S 2011 Black carbon aerosols over India; UNEPs Black Carbon e-Bulletin 3 1–3.

    Google Scholar 

  • Moorthy K K, Babu S S, Satheesh S K, Srinivasan J and Dutt C B S 2007 Dust absorption over the great Indian desert inferred using ground-based and satellite remote sensing; J. Geophys. Res.: Atmospheres 112, doi: 10.1029/2006JD007690.

  • Moorthy K, Satheesh S, Babu S and Dutt C 2008 Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview; J. Earth Syst. Sci. 117 243–262, doi: 10.1007/s12040-008-0029-7.

    Article  Google Scholar 

  • Moorthy K K, Nair V S, Babu S S and Satheesh S K 2009 Spatial and vertical heterogeneities in aerosol properties over oceanic regions around India: Implications for radiative forcing; Quart. J. Roy. Meteor. Soc. 135 2131–2145, doi: 10.1002/qj.525.

    Article  Google Scholar 

  • Moorthy K K, Beegum S N, Babu S S, Smirnov A, John S R, Kumar K R, Narasimhulu K, Dutt C B S and Nair V S 2010 Optical and physical characteristics of Bay of Bengal aerosols during W-ICARB: Spatial and vertical heterogeneities in the marine atmospheric boundary layer and in the vertical column; J. Geophys. Res.: Atmospheres 115, doi: 10.1029/2010JD014094.

  • Moorthy K K, Beegum S N, Srivastava N, Satheesh S, Chin M, Blond N, Babu S S and Singh S 2013a Performance evaluation of chemistry transport models over India; Atmos. Environ. 71 210–225, doi: 10.1016/j.atmosenv.2013.01.056.

    Article  Google Scholar 

  • Moorthy K K, Babu S S, Manoj M R and Satheesh S K 2013b Buildup of aerosols over the Indian region; Geophys. Res. Lett., doi: 10.1002/grl.50165.

  • Myhre G 2009 Consistency between satellite-derived and modeled estimates of the direct aerosol effect; Science 325 187–190, doi: 10.1126/science.1174461.

    Article  Google Scholar 

  • Nair V S, Moorthy K K, Alappattu D P, Kunhikrishnan P K, George S, Nair P R, Babu S S, Abish B, Satheesh S K, Tripathi S N, Niranjan K, Madhavan B L, Srikant V, Dutt C B S, Badarinath K V S and Reddy R R 2007 Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport; J. Geophys. Res.: Atmospheres 112, doi: 10.1029/2006JD008099.

  • Nair V S, Solmon F, Giorgi F, Mariotti L, Babu S S and Moorthy K K 2012 Simulation of south Asian aerosols for regional climate studies; J. Geophys. Res.: Atmospheres 117, doi: 10.1029/2011JD016711.

  • Olivier J G J, Bouwman A, Berdowski J, Veldt C, Bloos J, Visschedijk A, Zandveld P a., Haverla J and et al. 1996 Description of EDGAR version 2.0: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1×1 grid, Bilthoven, Netherlands, Rijksinstituut voor Volksgezondheid en Milieu RIVM.

  • Pal J S, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher S A, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed F S, Sloan L C, Bell J L, Diffenbaugh N S, Karmacharya J, Konar A, Martinez D, da Rocha R P and Steinerh A L 2007 Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET; Bull. Am. Meteorol. Soc. 88 1395–1409, doi: 10.1175/BAMS-889-1395.

    Article  Google Scholar 

  • Ramanathan V, Crutzen P J, Lelieveld J, Mitra A P, Althausen D, Anderson J, Andreae M O, Cantrell W, Cass G R, Chung C E, Clarke A D, Coakley J A, Collins W D, Conant W C, Dulac F, Heintzenberg J, Heymsfield A J, Holben B, Howell S, Hudson J, Jayaraman A, Kiehl J T, Krishnamurti T N, Lubin D, McFarquhar G, Novakov T, Ogren J A, Podgorny I A, Prather K, Priestley K, Prospero J M, Quinn P K, Rajeev K, Rasch P, Rupert S, Sadourny R, Satheesh S K, Shaw G E, Sheridan P and Valero F P J 2001 Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze; J. Geophys. Res.: Atmospheres 106 28,371–28,398, doi: 10.1029/2001JD900133.

    Article  Google Scholar 

  • Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl J, Washington W, Fu Q, Sikka D and Wild M 2005 Atmospheric brown clouds: Impacts on south Asian climate and hydrological cycle; Proc. National Academy of Sciences of the United States of America 102 5326–5333, doi: 10.1073/pnas.0500656102.

    Article  Google Scholar 

  • Remer L A, Kaufman Y, Tanré D, Mattoo S, Chu D, Martins J, Li R R, Ichoku C, Levy R, Kleidman R and et al. 2005 The MODIS aerosol algorithm, products, and validation; J. Atmos. Sci. 62 947–973. doi:10.1175/JAS3385.1.

    Article  Google Scholar 

  • Rienecker M M, Suarez M J, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich M G, Schubert S D, Takacs L and Kim G K 2011 MERRA: NASA’s modern-era retrospective analysis for research and applications; J. Climate 24 3624–3648, doi: 10.1175/JCLI-D-11-00015.1.

    Article  Google Scholar 

  • Sajani S, Krishnamoorthy K, Rajendran K and Nanjundiah R S 2012 Monsoon sensitivity to aerosol direct radiative forcing in the Community Atmosphere Model; J. Earth Syst. Sci. 121 867–889, doi: 10.1007/s12040-012-0198-2.

    Article  Google Scholar 

  • Sánchez-Ccoyllo O and de Fátima Andrade M 2002 The influence of meteorological conditions on the behaviour of pollutants concentrations in São Paulo, Brazil; Environ. Pollut. 116 257–263. doi, doi: 10.1016/S0269-7491(01)00129-4 .

    Article  Google Scholar 

  • Satheesh S and Moorthy K K 2005 Radiative effects of natural aerosols: A review; Atmos. Environ. 39 2089–2110, doi: 10.1016/j.atmosenv.2004.12.029.

    Article  Google Scholar 

  • Schultz M, Backman L, Balkanski Y, Bjoerndalsaeter S, Brand R, Burrows J, Dalsoeren S, de Vasconcelos M, Grodtmann B and Hauglustaine D 2007 REanalysis of the TROpospheric chemical composition over the past 40 years (RETRO) – a long-term global modeling study of tropospheric chemistry, Final Report, Published as report no. 48/2007 in the series Reports on Earth System Science of the Max Planck Institute for Meteorology, Hamburg, ISSN 1614–1199.

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W and Powers J 2008 A description of the advanced research WRF version 3. NCAR technical note NCAR/TN-475 + STR, doi: 10.5065/D68S4MVH.

  • Smirnova T G, Brown J M and Benjamin S G 1997 Performance of different soil model configurations in simulating ground surface temperature and surface fluxes; Mon. Wea. Rev. 125 1870–1884, doi: 10.1175/1520-0493(1997)125%3C1870:PODSMC%3E2.0.CO;2.

  • Smirnova T G, Brown J M, Benjamin S G and Kim D 2000 Parameterization of cold-season processes in the maps land-surface scheme; J. Geophys. Res.: Atmospheres 105 4077–4086, doi: 10.1029/1999JD901047.

    Article  Google Scholar 

  • Sreekanth V, Krishna Moorthy K, Satheesh S, Suresh Babu S, Nair V S and Niranjan K 2011 Airborne measurements of aerosol scattering properties above the MABL over Bay of Bengal during W-ICARB-characteristics and spatial gradients; In: Annales Geophysicae, Copernicus Group, pp. 895–908, doi: 10.5194/angeo-29-895-2011.

  • Takemura T, Nozawa T, Emori S, Nakajima T Y and Nakajima T 2005 Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model; J. Geophys. Res.: Atmospheres 110, doi: 10.1029/2004JD005029.

  • Tao W K, Chen J P, Li Z, Wang C and Zhang C 2012 Impact of aerosols on convective clouds and precipitation; Rev. Geophys. 50, doi: 10.1029/2011RG000369.

  • Thompson G, Rasmussen R M and Manning K 2004 Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part 1: Description and sensitivity analysis; Mon. Wea. Rev. 132 519–542, doi: 10.1175/1520-0493(2004)132%3C0519:EFOWPU%3E2.0.CO;2.

  • Twomey S 1977 The influence of pollution on the shortwave albedo of clouds; J. Atmos. Sci. 34 1149–1152, doi: 10.1175/1520-0469(1977)034%3C1149:TIOPOT%3E2.0.CO;2.

  • Wang C, Kim D, Ekman A M L, Barth M C and Rasch P J 2009 Impact of anthropogenic aerosols on Indian summer monsoon; Geophys. Res. Lett. 36, doi: 10.1029/2009GL040114.

  • Wehner B and Wiedensohler A 2002 Long term measurements of submicrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases; Atmospheric Chemistry and Physics Discussions 2 1699–1733, doi: 10.5194/acpd-2-16992002.

    Article  Google Scholar 

  • Wild O, Zhu X and Prather M 2000 Fast-j: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models; J. Atmos. Chem. 37 245–282, doi: 10.1023/A:1006415919030.

    Article  Google Scholar 

  • Yu H, Kaufman Y J, Chin M, Feingold G, Remer L A, Anderson T L, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy M S, Schulz M, Takemura T and Zhou M 2006 A review of measurement-based assessments of the aerosol direct radiative effect and forcing; Atmos. Chem. Phys. 6 613–666, doi: 10.5194/acp-6-613-2006.

    Article  Google Scholar 

  • Zhang G J and McFarlane N A 1995 Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model; Atmosphere-Ocean 33 407–446, doi: 10.1080/07055900.1995.9649539.

    Article  Google Scholar 

  • Zhang J, Christopher S A, Remer L A and Kaufman Y J 2005 Shortwave aerosol radiative forcing over cloud-free oceans from TERRA: 2. Seasonal and global distributions; J. Geophys. Res.: Atmospheres 110, doi: 10.1029/2004JD005009.

Download references

Acknowledgements

Authors are grateful to the Computational and Information Systems Laboratory (CISL) for the Research Data Archive. Authors wish to thank the British Atmospheric Data Centre, for the TOMS aerosol index data. They also like to thank GVAX project team for their help in setting up the model. Computations were conducted on the DST-FIST supported computational cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi S Nanjundiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govardhan, G., Nanjundiah, R.S., Satheesh, S.K. et al. Performance of WRF-Chem over Indian region: Comparison with measurements. J Earth Syst Sci 124, 875–896 (2015). https://doi.org/10.1007/s12040-015-0576-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-015-0576-7

Keywords

Navigation