Skip to main content
Log in

Construction of an EST-SSR-based interspecific transcriptome linkage map of fibre development in cotton

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Quantitative trait locus (QTL) mapping is an important method in marker-assisted selection breeding. Many studies on the QTLs focus on cotton fibre yield and quality; however, most are conducted at the DNA level, which may reveal null QTLs. Hence, QTL mapping based on transcriptome maps at the cDNA level is often more reliable. In this study, an interspecific transcriptome map of allotetraploid cotton was developed based on an F2 population (Emian22 × 3-79) by amplifying cDNA using EST-SSRs. The map was constructed using cDNA obtained from developing fibres at five days post anthesis (DPA). A total of 1270 EST-SSRs were screened for polymorphisms between the mapping parents. The resulting transcriptome linkage map contained 242 markers that were distributed in 32 linkage groups (26 chromosomes). The full length of this map is 1938.72 cM with a mean marker distance of 8.01 cM. The functions of some ESTs have been annotated by exploring homologous sequences. Some markers were related to the differentiation and elongation of cotton fibre, while most were related to the basic metabolism. This study demonstrates that constructing a transcriptome linkage map by amplifying cDNAs using EST-SSRs is a simple and practical method as well as a powerful tool to map eQTLs for fibre quality and other traits in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Brugmans B., Fernandez del Carmen A., Bachem C. W., van Os H., van Eck H. J., and Visser R. G. 2002 A novel method for the construction of genomewide transcriptome maps. Plant J. 31, 211–222.

    Article  Google Scholar 

  • Claverie M., Souquet M., Jean J., Forestier-Chiron N., Lepitre V., Pré M., et al. 2012 cDNA-AFLP-based genetical genomics in cotton fibers. Theor. Appl. Genet. 124, 665–683.

    Article  CAS  PubMed  Google Scholar 

  • Conesa A., Götz S., Garcia-Gomez J. M., Terol J., Talon M., and Robles M. 2005 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676.

    Article  CAS  PubMed  Google Scholar 

  • Fang D. D. and Yu J. Z. 2012 Addition of 455 microsatellite marker loci to the high-density Gossypium hirsutum TM-1 × G. barbadense 3-79 genetic map. J. Cotton Sci. 16, 229–248.

    CAS  Google Scholar 

  • Götz S., García-Gómez J. M., Terol J., Williams T. D., Nueda M. J., Robles M., et al. 2008 High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435.

    Article  PubMed Central  PubMed  Google Scholar 

  • He D. H., Lin Z. X., Zhang X. L., Nie Y. C., Guo X. P., Zhang Y. X., and Li W. 2007 QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153, 181–197.

    Article  CAS  Google Scholar 

  • He X. H., Qin H., Hu Z., Zhang T., and Zhang Y. M. 2011 Mapping of epistatic quantitative trait loci in four-way crosses. Theor. Appl. Genet. 122, 33–48.

    Article  PubMed  Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distance from recombination values. Ann. Eugen. 12, 172–175.

    Article  Google Scholar 

  • Lacape J. M., Nguyen T. B., Courtois B., Belot J. L., Giband M., Gourlot J. P., et al. 2005 QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci. 45, 123–140.

    Article  CAS  Google Scholar 

  • Lacape J. M., Llewellyn D., Jacobs J., Arioli T., Becker D., Calhoun S., et al. 2010 Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol. 10, 132.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee J. J., Woodward A. W., and Chen Z. J. 2007 Gene expression changes and early events in cotton fibre development. Ann. Bot. 100, 1391–1401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li G., Gao M., Yang B., and Quiros C. F. 2003 Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107, 168–180.

    Article  CAS  PubMed  Google Scholar 

  • Lin Z., He D., Zhang X., Nie Y., Guo X., Feng C., et al. 2005 Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed. 124, 180–187.

    Article  CAS  Google Scholar 

  • Lin Z. X., Zhang Y. X., Zhang X. L., and Guo X. P. 2009 A high-density integrative linkage map for Gossypium hirsutum. Euphytica 166, 35–45.

    Article  Google Scholar 

  • Liu H. W., Wang X. F., Pan Y. X., Shi R. F., Zhang G. Y., and Ma Z. Y. 2009 Mining cotton fiber strength candidate genes based on transcriptome mapping. Chin. Sci. Bull. 54, 4651–4657.

    Article  CAS  Google Scholar 

  • Liu R., Wang B., Guo W., Wang L. and Zhang T. 2011 Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2. Theor. Appl. Genet. 123, 439–454.

    Article  CAS  PubMed  Google Scholar 

  • Liu R., Wang B., Guo W., Qin Y., Wang L., Zhang Y., and Zhang T. 2012 Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol. Breed. 29, 297–311.

    Article  CAS  Google Scholar 

  • Liu C., Yuan D., Zhang X., and Lin Z. 2013 Isolation, characterization and mapping of genes differentially expressed during fibre development between Gossypium hirsutum and G. barbadense by cDNA-SRAP. J. Genet. 92, 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Mei M., Syed N. H., Gao W., Thaxton P. M., Smith C. W., Stelly D. M., and Chen Z. J. 2004 Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor. Appl. Genet. 108, 280–291.

    Article  CAS  PubMed  Google Scholar 

  • Pang M., Percy R. G., Stewart J. Mc. D., Hughs E., and Zhang J. 2012 Comparative transcriptome analysis of Pima and Acala cotton during boll development using 454 pyrosequencing technology. Mol. Breed. 30, 1143–1153.

    Article  CAS  Google Scholar 

  • Qin H. D., Guo W. Z., Zhang Y. M., and Zhang T. Z. 2008 QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor. Appl. Genet. 117, 883– 894.

    Article  PubMed  Google Scholar 

  • Reinisch A. J., Dong J. M., Brubaker C. L., Stelly D. M., Wendel J. F., and Paterson A. H. 1994 A detailed RFLP map of cotton Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138, 829–847.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ritter E., de Galarreta J. I. R., van Eck H. J., and Sánchez I. 2008 Construction of a potato transcriptome map based on the cDNA-AFLP technique. Theor. Appl. Genet. 116, 1003–1013.

    Article  CAS  PubMed  Google Scholar 

  • Rong J. K., Abbey C., Bowers J. E., Brubaker C. L., Chang C., Peng W. C., et al. 2004 A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166, 389–417.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen X. L., Zhang T. Z., Guo W. Z., Zhu X. F., and Zhang X. Y. 2006 Mapping fiber and yield QTLs with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci. 46, 61–66.

    Article  CAS  Google Scholar 

  • Stam P. 1993 Construction of integrated genetic linkage maps by means of a new computer package: join map. Plant J. 3, 739–744.

    Article  CAS  Google Scholar 

  • Sun F. D., Zhang J. H., Wang S. F., Gong W. K., Shi Y. Z., Liu A. Y., et al. 2012 QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol. Breed. 30, 569–582.

    Article  Google Scholar 

  • Ulloa M., Saha S., Jenkins J. N., Meredith W. R., McCarty J. C., and Stelly D. M. 2005 Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J. Hered. 96, 132–144.

    Article  Google Scholar 

  • Wang B. H., Guo W. Z., Zhu X. F., Wu Y. T., Huang N. T., and Zhang T. Z. 2006 QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica 152, 367–378.

    Article  CAS  Google Scholar 

  • Wu J., Gutierrez O. A., Jenkins J. N., McCarty J. C., and Zhu J. 2009 Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica 165, 231–245.

    Article  Google Scholar 

  • Yu Y., Yuan D. J., Liang S. G., Li X. M., Wang X. Q., Lin Z. X., et al. 2011 Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. BMC Genomics 12, 15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J., Zhang K., Li S., Yu S., Zhai H., Wu M., et al. 2013 Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theor. Appl. Genet. 126, 275–287.

    Article  PubMed  Google Scholar 

  • Zhang Z. S., Xiao Y. H., Luo M., Li X. B., Luo X. Y., Hou L., et al. 2005 Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) Euphytica 144, 91–99.

    Article  CAS  Google Scholar 

  • Zhang Z. S., Hu M. C., Zhang J., Liu D. J., Zheng J., Zhang K., et al. 2009 Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L). Mol. Breed. 24, 49–61.

    Article  Google Scholar 

  • Zhang K., Zhang J., Ma J., Tang S., Liu D., Teng Z., et al. 2012 Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.) Mol. Breed. 29, 335–348.

    Article  Google Scholar 

  • Zhao L., Lv Y., Cai C., Tong X., Chen X., Zhang W., et al. 2012 Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information. BMC Genomics 13, 539.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu L. F., Tu L. L., Zhen F. C., Liu D. Q., and Zhang X. L. 2005 An improved simple protocol for isolation of high quality RNA from Gossypium spp. suitable for cDNA library construction. Acta Agromomica Sin. 31, 1657–1659.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Basic Research Program (no. 2011CB109303 and 2010CB126001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZHONGXU LIN.

Additional information

[Liu C., Yuan D. and Lin Z. 2014 Construction of an EST-SSR-based interspecific transcriptome linkage map of fibre development in cotton. J. Genet. 93, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LIU, C., YUAN, D. & LIN, Z. Construction of an EST-SSR-based interspecific transcriptome linkage map of fibre development in cotton. J Genet 93, 689–697 (2014). https://doi.org/10.1007/s12041-014-0425-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0425-5

Keywords

Navigation