Skip to main content
Log in

Population structure and diversity assessment of barley (Hordeum vulgare L.) introduction from ICARDA

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

This study was undertaken to measure the genetic diversity and population structure of 48 barley accessions introduced from ICARDA using 51 polymorphic simple sequence repeat (SSR) markers to select unique parents for breeding. The mean polymorphic information content was 0.491, suggesting high polymorphism for the selected SSR markers among the barley accessions. The population structure indicated a fine genetic base only with two major clusters. All accessions had 100% membership probability in their respective clusters. Analysis of molecular variance revealed that most (78%) of the variation was attributed between populations, while 22% was due to variation among individuals within populations. Neighbour-joining (NJ) tree was constructed using this distance matrix and two major clusters were observed in it. Cluster 1 had all hulled barley accessions and cluster 2 had all hulless barley accessions. Cluster 2 could be further divided into three subclusters. Principal coordinates analysis results were similar to the NJ tree, where the hulled and hulless barley accessions were grouped into separate clusters. This study established the existence of considerable genetic diversity among the 48 tested accessions. The selected genetic resources will be useful for barley breeding in India and other countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Amezrou R., Gyawali S., Belqadi L., Chao S., Arbaoui M., Mamidi S. et al. 2018 Molecular and phenotypic diversity of a worldwide ICARDA spring barley collection. Genet. Resour. Crop Evolut. 65, 255–269.

    Article  CAS  Google Scholar 

  • Badr A., Rabey H. E., Effgen S., Ibrahim H. H., Pozzi C., Rohde W. et al. 2000 On the origin and domestication history of barley (Hordeum vulgare L). Mol. Biol. Evol. 17, 499–510.

    Article  CAS  Google Scholar 

  • Baek H., Beharav A. and Nevo E. 2003 Ecological-genomic diversity of microsatellites in wild barley (Hordeum spontaneum) populations in Jordan. Theor. Appl. Genet. 106, 397–410.

    Article  CAS  Google Scholar 

  • Baik B. K. and Ullrich S. E. 2008 Barley for food: characteristics, improvement, and renewed interest. J. Cereal Sci48, 233–242.

    Article  CAS  Google Scholar 

  • Barton N. H. and Slatkin M. 1986 A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56, 409.

    Article  Google Scholar 

  • Bellucci E., Bitocchi E., Rau D., Nanni L., Ferradini N., Giardini A. et al. 2013 Population structure of barley landrace populations and gene-flow with modern varieties. PLoS One 8, e83891.

    Article  Google Scholar 

  • Bengtsson T., Manninen O., Jahoor A. and Orabi J. 2017 Genetic diversity, population structure and linkage disequilibrium in Nordic spring barley (Hordeum vulgare L. subsp. vulgare). Genet. Resour. Crop Evol64, 2021–2033.

    Article  Google Scholar 

  • Brockman D. A., Chen X. and Gallaher D. D. 2013 Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. Eur. J. Nutr52, 1743–1753.

    Article  CAS  Google Scholar 

  • Drikvand R., Salahvarzi E., Salahvarzi A. and Hossinpour T. 2012 Study of genetic diversity among rainfed barley genotypes using ISJ markers and morphological traits. J. Agric. Sci. 4, 137.

    Google Scholar 

  • Earl Dent A. and Vonholdt Bridgett M. 2012 STRUCTURE HARVESTER: a website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361.

    Article  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.

    Article  CAS  Google Scholar 

  • Hammer O., Harper D. A. and Ryan P. D. 2001 PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9.

    Google Scholar 

  • Hua W., Zhang X., Zhu J., Shang Y., Wang J., Jia Q. et al. 2015 A study of genetic diversity of colored barley (Hordeum vulgare L.) using SSR markers. Genet. Resour. Crop Evol. 62, 395–406.

    Article  CAS  Google Scholar 

  • Ivandic V., Hackett C. A., Nevo E., Keith R., Thomas W. T. and Forster B. P. 2002 Analysis of simple sequence repeats (SSRs) in wild barley from the fertile crescent: associations with ecology, geography and flowering time. Plant Mol. Biol. 48, 511–527.

    Article  CAS  Google Scholar 

  • Jena S. N., Srivastava A., Singh U. M., Roy S., Banerjee N., Rai K. M. et al. 2012 Analysis of genetic diversity, population structure and linkage disequilibrium in elite cotton (Gossypium L.) germplasm in India. Crop Pasture Sci. 62, 859–875.

    Article  Google Scholar 

  • Kalinowski S. T. 2004 Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv. Genet. 5, 539–543.

    Article  CAS  Google Scholar 

  • Kim H. S., Park K. G., Baek S. B., Kim J. G. and Nam J. H. 2005 Genetic diversity measured by RAPDs in Korean barley germplasm pools. Korean J. Crop Sci. 50, 131–141.

    Google Scholar 

  • Kumar S., Stecher G. and Tamura K. 2016 MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Liu K. and Muse S. V. 2005 PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.

    Article  CAS  Google Scholar 

  • Maestri E., Malcevschi A., Massari A. and Marmiroli N. 2002 Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Mol. Genet. Genomics 267, 186–201.

    Article  CAS  Google Scholar 

  • Malysheva-Otto L. V., Ganal M. W. and Röder M. S. 2006 Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet. 7, 6.

    Article  Google Scholar 

  • Maniruzzaman M., Talukder Z. A., Rohman S., Begum F. and Amiruzzaman M. 2014 Polymorphism study in barley (Hordeum vulgare) genotypes using microsatellite (SSR) markers, Bangladesh. J. Agric. Res. 39, 33–45.

    Google Scholar 

  • Manjunatha T., Bisht I. S. and Bhat K. V. 2011 Genetic structure of hull-less barley (Hordeum vulgare L. subsp. vulgare) landrace populations from North-western Indian Himalayas. Indian J. Biotechnol. 10, 25–32.

    Google Scholar 

  • Nei M. and Li W. H. 1979 Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273.

    Article  CAS  Google Scholar 

  • Nei M., Tajima F. and Tateno Y. 1983 Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol19, 153–170.

    Article  CAS  Google Scholar 

  • Peakall R. and Smouse P. E. 2007 GENALEX6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. 6, 288–295.

    Article  Google Scholar 

  • Powell W., Machray G. C. and Provan J. 1996 Polymorphism revealed by simple sequence repeats. Trends Plant Sci1, 215–222.

    Article  Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly M. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell J., Booth A., Fuller J., Harrower B., Hedley P., Machray G. and Powell W. 2004 A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47, 389–398.

    Article  CAS  Google Scholar 

  • Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A. and Allard R. W. L. 1984 Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 24, 8014–8018.

    Article  Google Scholar 

  • Sullivan P., Arendt E. and Gallagher E. 2013 The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol29, 124–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge Mr Deepender Kumar (Ph.D. Scholar, ICAR-IIWBR, Karnal) for his assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar.

Additional information

Corresponding editor: Manoj Prasad

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

Supplementary material 2 (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Banjarey, P., Malik, R. et al. Population structure and diversity assessment of barley (Hordeum vulgare L.) introduction from ICARDA. J Genet 99, 70 (2020). https://doi.org/10.1007/s12041-020-01226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01226-6

Keywords

Navigation