Skip to main content

Advertisement

Log in

Network-based gene deletion analysis identifies candidate genes and molecular mechanism involved in clear cell renal cell carcinoma

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Human clear cell renal cell carcinoma (ccRCC) is the most common and frequently occurring histological subtype of RCC. Unlike other carcinomas, candidate predictive biomarkers for this type are in need to explore the molecular mechanism of ccRCC and identify candidate target genes for improving disease management. For this, we chose case–control-based studies from the Gene Expression Omnibus and subjected the gene expression microarray data to combined effect size meta-analysis for identifying shared genes signature. Further, we constructed a subnetwork of these gene signatures and evaluated topological parameters during the gene deletion analysis to get to the central hub genes, as they form the backbone of the network and its integrity. Parallelly, we carried out functional enrichment analysis using gene ontology and Elsevier disease pathway collection. We also performed microRNAs target gene analysis and constructed a regulatory network. We identified a total of 577 differentially expressed genes (DEGs), where 146 overexpressed and 431 underexpressed with a significant threshold of adjusted P values < 0.05. Enrichment analysis of these DEGs’ functions showed a relation to metabolic and cellular pathways like metabolic reprogramming in cancer, proteins with altered expression in cancer metabolic reprogramming, and glycolysis activation in cancer (Warburg effect). Our analysis revealed the potential role of PDHB and ATP5C1 in ccRCC by altering metabolic pathways and amyloid beta precursor protein (APP) role in altering cell-cycle growth for the tumour progression in ccRCC conditions. Identification of these candidate predictive genes paves the way for the development of biomarker-based methods for this carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3 
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Antonio L. B., Marina S., Rodolfo M. and Ziya K. 2006 WHO Classification of the renal tumors of the adults. Eur. Urol. 49, 798–805.

    Google Scholar 

  • Aubrey B. J., Strasser A. and Kelly G. L. 2016 Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb. Perspect. Med. 6, a026062.

    PubMed  PubMed Central  Google Scholar 

  • Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M. et al. 2006 Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2. https://doi.org/10.1038/msb4100050.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey S. T., Smith A. M., Kardos J., Wobker S. E., Wilson H. L., Krishnan B. et al. 2017 MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nat. Commun. 8, 1–12.

    CAS  Google Scholar 

  • Baugh E. H., Ke H., Levine A. J., Bonneau R. A., Chan C. S. et al. 2018 Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160.

    CAS  PubMed  Google Scholar 

  • Beroukhim R., Brunet J. P., Di Napoli A., Mertz K. D., Seeley A., Pires M. M. et al. 2009 Patterns of gene expression and copy-number alterations in von-Hippel Lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock M. D., Pickard K., Mitter R., Sayan A. E., Primrose J. N., Ivan C. et al. 2015 Stratifying risk of recurrence in stage II colorectal cancer using deregulated stromal and epithelial microRNAs. Oncotarget 6, 7262–7279.

    PubMed  PubMed Central  Google Scholar 

  • Chandrashekar D. S., Bashel B., Balasubramanya S. A. H., Creighton C. J., Ponce-Rodriguez I., Chakravarthi B. V. et al. 2017 UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen E. Y., Tan C. M., Kou Y., Duan Q., Wang Z., Meirelles G. V. et al. 2013 Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128.

    PubMed  PubMed Central  Google Scholar 

  • Choi J. K., Yu U., Kim S. and Yoo O. J. 2003 Combining multiple microarray studies and modeling interstudy variation. Bioinformatics, https://doi.org/10.1093/bioinformatics/btg1010.

    Article  PubMed  Google Scholar 

  • Cochran W. G. 1954 The combination of estimates from different experiments. Biometrics 10, 101.

    Google Scholar 

  • DeCastro G. J. and McKiernan J. M. 2008 Epidemiology, clinical staging, and presentation of renal cell carcinoma. Urol. Clin. North Am. 35, 581–592.

    PubMed  Google Scholar 

  • Donehower L. A., Soussi T., Korkut A., Liu Y., Schultz A., Cardenas M. et al. 2019 Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 1370–1384.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H., Hong S., Xu X., Xiao Y., Jin L. and Xiong M. 2010 Meta-analysis and network analysis of five ovarian cancer gene expression dataset. In 3rd International Joint Conference on Computational Sciences and Optimization, CSO 2010: Theoretical Development and Engineering Practice, pp. 242–246. https://doi.org/10.1109/CSO.2010.245.

  • Duns G., van den Berg E., van Duivenbode I., Osinga J., Hollema H., Hofstra R. M. et al. 2010 Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res. 70, 4287–4291.

    CAS  PubMed  Google Scholar 

  • Eckel-Passow J. E., Serie D. J., Bot B. M., Joseph R. W., Hart S. N., Cheville J. C. et al. 2014 Somatic expression of ENRAGE is associated with obesity status among patients with clear cell renal cell carcinoma. Carcinogenesis 35, 822–827.

    CAS  PubMed  Google Scholar 

  • Ganci F., Sacconi A., Bossel Ben-Moshe N., Manciocco V., Sperduti I., Strigari L. et al. 2013 Expression of TP53 mutation-associated microRNAs predicts clinical outcome in head and neck squamous cell carcinoma patients. Ann. Oncol. 24, 3082–3088.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever G., Chu A. M., Ni L., Connelly C., Riles L., Véronneau S. et al. 2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    CAS  PubMed  Google Scholar 

  • Haidich A. B. 2010 Meta-analysis in medical research. Hippokratia 14 (Suppl 1), 29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hui A. B., Lin A., Xu W., Waldron L., Perez-Ordonez B., Weinreb I. et al. 2013 Potentially prognostic miRNAs in HPV-associated oropharyngeal carcinoma. Clin. Cancer Res. 19, 2154–2162.

    CAS  PubMed  Google Scholar 

  • Ideker T. and Sharan R. 2008 Protein networks in disease. Genome Res. 18, 644–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A., Tiwari R. C., Murray T., Ghafoor A., Samuels A., Ward E. et al. 2008 Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96.

    PubMed  Google Scholar 

  • Jha P. K., Vijay A., Sahu A. and Ashraf M. Z. 2016 Comprehensive gene expression meta-analysis and integrated bioinformatic approaches reveal shared signatures between thrombosis and myeloproliferative disorders. Sci. Rep. 6, 37099.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S. and Baltimore D. 2016 RNA-binding protein Lin28 in cancer and immunity. Cancer Lett. 375, 108–113.

    CAS  PubMed  Google Scholar 

  • Jones J., Otu H., Spentzos D., Kolia S., Inan M., Beecken W. D. et al. 2005 Gene signatures of progression and metastasis in renal cell cancer. Clin. Cancer Res. 11, 5730–5739.

    CAS  PubMed  Google Scholar 

  • Kahraman M., Laufer T., Backes C., Schrörs H., Fehlmann T., Ludwig N. et al. 2017 Technical stability and biological variability in micrornas from dried blood spots: a lung cancer therapy-monitoring showcase. Clin. Chem. 63, 1476–1488.

    CAS  PubMed  Google Scholar 

  • Kim N. H., Cha Y. H., Lee J., Lee S. H., Yang J. H., Yun J. S. et al. 2017 Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat. Commun., https://doi.org/10.1038/ncomms14374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacny S., Wilson T., Clement F., Roberts D. J., Faris P., Ghali W. A. et al. 2018 Kaplan-Meier survival analysis overestimates cumulative incidence of health-related events in competing risk settings: a meta-analysis. J. Clin. Epidemiol. 93, 25–35.

    PubMed  Google Scholar 

  • Laskey R. A. and Madine M. A. 2003 A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4, 26–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lel J., Billatos E., Moses E., Stevenson C. S., Lorenzi M., Liu G. et al. 2018 Immune alterations in the airway transcriptome of lung cancer patients, in C99. HARNESSING THE IMMUNE SYSTEM IN LUNG CANCER: WHY SO DEFENSIVE? Am. Thorac. Soc. A5941-A5941.

  • Lenburg M. E., Liou L. S., Gerry N. P., Frampton G. M., Cohen H. T. et al. 2003 Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer 3, 31.

    PubMed  PubMed Central  Google Scholar 

  • Liang T., Sang S., Shao Q., Deng Z., Wang T. and Kang Q. Z. 2020 Abnormal expression and prognostic significance of EPB41L1 in kidney renal clear cell carcinoma based on data mining. Cancer Cell Int. 20, 356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lichner Z., Scorilas A., White N. M., Girgis A. H., Rotstein L., Wiegand K. C. et al. 2013 The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma. Am. J. Pathol. 182, 1163–1170.

    CAS  PubMed  Google Scholar 

  • Ljungberg B., Campbell S. C., Cho H. Y., Jacqmin D., Lee J. E., Weikert S. et al. 2011 The Epidemiology of renal cell carcinoma. Eur. Urol. 60, 615–621.

    PubMed  Google Scholar 

  • Loo L. W., Cheng I., Tiirikainen M., Lum-Jones A., Seifried A., Dunklee L. M. et al. 2012 Cis-expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PLoS One, https://doi.org/10.1371/journal.pone.0030477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Beltran A. and Cheng L. 2006 Histologic variants urothelial carcinoma: differential diagnosis and clinical implications. Hum. Pathol. 371, 1371–1388.

    Google Scholar 

  • Luo T., Chen X., Zeng S., Guan B., Hu B., Meng Y. et al. 2018 Bioinformatic identification of key genes and analysis of prognostic values in clear cell renal cell carcinoma. Oncol. Lett. 16, 1747–1757.

    PubMed  PubMed Central  Google Scholar 

  • Ma B., Cheng H., Mu C., Geng G., Zhao T., Luo Q. et al. 2019 The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression. Nat. Commun. 10, 1034.

    PubMed  PubMed Central  Google Scholar 

  • Marot G., Foulley J. L., Mayer C. D. and Jaffrézic F. 2009 Moderated effect size and P-value combinations for microarray meta-analyses. Bioinformatics 25, 2692–2699.

    CAS  PubMed  Google Scholar 

  • Mistry M., Gillis J. and Pavlidis P. 2013 Meta-analysis of gene coexpression networks in the post-mortem prefrontal cortex of patients with schizophrenia and unaffected controls. BMC Neurosci. 14, 105.

    PubMed  PubMed Central  Google Scholar 

  • Moher D., Liberati A., Tetzlaff J., Altman D. G., and Prisma Group 2009 Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med, https://doi.org/10.1371/journal.pmed.1000097.

    Article  Google Scholar 

  • Müller U. C. and Zheng H. 2012 Physiological functions of APP family proteins. Cold Spring Harb. Perspec. Med., https://doi.org/10.1101/cshperspect.a006288.

    Article  Google Scholar 

  • Navarro-Quiroz E., Pacheco-Lugo L., Lorenzi H., Díaz-Olmos Y., Almendrales L., Rico E. et al. 2016 High-throughput sequencing reveals circulating miRNAs as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. PLoS One, https://doi.org/10.1371/journal.pone.0166202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak A. P., Kapur A., Barroilhet L. and Patankar M. S. 2018 Oxidative phosphorylation: a target for novel therapeutic strategies against ovarian cancer. Cancers 10, 337.

    PubMed Central  Google Scholar 

  • Peña-Llopis S., Vega-Rubín-de-Celis S., Liao A., Leng N., Pavía-Jiménez A., Wang S. et al. 2012 BAP1 loss defines a new class of renal cell carcinoma. Nat. Genet. 44, 751–759.

    PubMed  PubMed Central  Google Scholar 

  • Selvaraj G., Kaliamurthi S., Kaushik A. C., Khan A., Wei Y. K., Cho W. C. et al. 2018 Identification of target gene and prognostic evaluation for lung adenocarcinoma using gene expression meta-analysis, network analysis and neural network algorithms. J. Biomed. Inform. 86, 120–134.

    PubMed  Google Scholar 

  • Sobol A., Galluzzo P., Weber M. J., Alani S., Bocchetta M. et al. 2015 Depletion of amyloid precursor protein (APP) causes G0 arrest in non-small cell lung cancer (NSCLC) cells. J. Cell. Physiol. 230, 1332–1341.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stark C., Breitkreutz B. J., Reguly T., Boucher L., Breitkreutz A. et al. 2006 BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539.

    CAS  PubMed  Google Scholar 

  • Takayama K. I., Tsutsumi S., Suzuki T., Horie-Inoue K., Ikeda K., Kaneshiro K. et al. 2009 Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res. 69, 137–142.

    CAS  PubMed  Google Scholar 

  • Toro-Domínguez D., Carmona-Sáez P. and Alarcón-Riquelme M. E. 2014 Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjögren’s syndrome uncovered through gene expression meta-analysis. Arthritis Res. Ther. 16, 489.

    PubMed  PubMed Central  Google Scholar 

  • Tun H. W., Marlow L. A., Von Roemeling C. A., Cooper S. J., Kreinest P., Wu K. et al. 2010 Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One 5, e10696.

    PubMed  PubMed Central  Google Scholar 

  • Wang J., Zhang P., Zhong J., Tan M., Ge J., Tao L. et al. 2016 The platelet isoform of phosphofructokinase contributes to metabolic reprogramming and maintains cell proliferation in clear cell renal cell carcinoma. Oncotarget 7, 27142–27157.

    PubMed  PubMed Central  Google Scholar 

  • Xia J., Benner M. J. and Hancock R. E. W. 2014 NetworkAnalyst - integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Res. 42, W167–W174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J., Gill E. E. and Hancock R. E. W. 2015 NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 10, 823–844.

    CAS  PubMed  Google Scholar 

  • Xiaohong Z., Lichun F., Na X., Kejian Z., Xiaolan X. and Shaosheng W. 2016 MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumor Biol. 37, 14989–14997.

    Google Scholar 

  • Zhao W., Cao L., Zeng S., Qin H. and Men T. 2015a Upregulation of miR-556-5p promoted prostate cancer cell proliferation by suppressing PPP2R2A expression. Biomed. Pharmacother. 75, 142–147.

    CAS  PubMed  Google Scholar 

  • Zhao Z., Wu F., Ding S., Sun L., Liu Z., Ding K. and Lu J. 2015b Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumor Biol. 36, 939–951.

    CAS  Google Scholar 

  • Zhu Y., Wu G., Yan W., Zhan H. and Sun P. 2017 miR-146b-5p regulates cell growth, invasion, and metabolism by targeting PDHB in colorectal cancer. Am. J. Cancer Res. 7, 1136–1150.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Vellore Institute of Technology (VIT) to support the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Arnold Emerson.

Additional information

Corresponding editor: Shrish Tiwari

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udayaraja, G.K., Arnold Emerson, I. Network-based gene deletion analysis identifies candidate genes and molecular mechanism involved in clear cell renal cell carcinoma. J Genet 100, 11 (2021). https://doi.org/10.1007/s12041-021-01260-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-021-01260-y

Keywords

Navigation