Skip to main content
Log in

The Value of Nonmodel Genomes and an Example Using SynMap Within CoGe to Dissect the Hexaploidy that Predates the Rosids

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

We find great value in the genomes from the nonmodel organisms papaya and grape. These genomes help us understand the chromosomal history of the super-order rosids. Essential to this process are new, online genomics tools that allow researchers to easily perform their own experiments, such as identifying and evaluating syntenic regions and estimating the degree of post-tetraploidy gene fractionation (diploidization); this process is exemplified here using the online comparative genomics toolset CoGe. Using case studies, we show that two of the three genomes within the rosid paleohexaploid are more fractionated with respect to one another than to a third genome. This indicates a shared history derived from a [tetraploid]-then-[wide cross to generate a triploid]-then-[whole genome duplication to generate the hexaploid,] or similar scenario involving unreduced gametes. Two alternative hypotheses are presented that differ in terms of the mechanism and timing of fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  3. Bergsten J (2005) A review of long-branch attraction. Cladistics 21:163–193

    Article  Google Scholar 

  4. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  5. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, Green ED, Sidow A, Batzoglou S (2003a) LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res 13:721–731

    Article  CAS  PubMed  Google Scholar 

  6. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S (2003b) Glocal alignment: finding rearrangements during alignment. Bioinformatics 1(19 Suppl):I54–I62

    Article  Google Scholar 

  7. Brudno M, Steinkamp R, Morgenstern B (2004) The CHAOS/DIALIGN WWW server for multiple alignment of genomic sequences. Nucleic Acids Res 32:W41–W44

    Article  CAS  PubMed  Google Scholar 

  8. Cannon SB et al (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci U S A 103:14959–14964

    Article  CAS  PubMed  Google Scholar 

  9. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410

    Article  Google Scholar 

  10. Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20:3643–3646

    Article  CAS  PubMed  Google Scholar 

  11. Hass BJ, Delcher AL, Wortman JR, Saltzberg SL (2004) DAGChainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20:3643–3646

    Article  Google Scholar 

  12. Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  13. Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059

    Article  CAS  PubMed  Google Scholar 

  14. Lockton S, Gaut BS (2005) Plant conserved non-coding sequences and paralogue evolution. Trends Genet 21:60–65

    Article  CAS  PubMed  Google Scholar 

  15. Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequence. Plant J 53:661–673

    Article  CAS  PubMed  Google Scholar 

  16. Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  Google Scholar 

  17. Nei M, Rogozin I, Piontkivska H (2000) Purifying selection and birth-and-death evolution in the ubiquitin gene family. Proic Natl Acad Sci USA 97:10866–10871

    Article  CAS  Google Scholar 

  18. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann Rev Ecolog Syst 29:467–501

    Article  Google Scholar 

  19. Rhee SY et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107

    Article  CAS  PubMed  Google Scholar 

  21. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488

    Article  CAS  PubMed  Google Scholar 

  22. Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946

    Article  CAS  PubMed  Google Scholar 

  23. Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  CAS  PubMed  Google Scholar 

  24. Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  25. Valesco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2:e1326

    Article  Google Scholar 

Download references

Acknowledgement

Funded by US National Science Foundation grant DBI0337083 to MF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lyons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyons, E., Pedersen, B., Kane, J. et al. The Value of Nonmodel Genomes and an Example Using SynMap Within CoGe to Dissect the Hexaploidy that Predates the Rosids. Tropical Plant Biol. 1, 181–190 (2008). https://doi.org/10.1007/s12042-008-9017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-008-9017-y

Keywords

Navigation