Skip to main content

Advertisement

Log in

Empirical formula for beta-particle-induced bremsstrahlung yields

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have measured the \(\beta \)-particle-induced bremsstrahlung energy yield and photon yield in the energy range 0.1668–2.274 MeV using beta sources such as \(^{\mathrm {35}}\hbox {S}\) (0.1668), \(^{\mathrm {99}}\hbox {Tc}\) (0.293), \(^{\mathrm {147}}\hbox {Pm}\) (0.225), \(^{\mathrm {90}}\hbox {Sr}\) (0.5462), \(^{\mathrm {204}}\hbox {Tl}\) (0.76), \(^{\mathrm {91}}\hbox {Y}\) (1.5), \(^{\mathrm {32}}\hbox {P}\) (1.71) and \(^{\mathrm {90}}\hbox {Y}\) (2.274 MeV) in thick targets of atomic number range \(13<Z<83\). We have used a NaI(Tl) detector to measure the bremsstrahlung radiations. Based on the experimental results, we have constructed a semiempirical formula for \(\beta \)-particle-induced bremsstrahlung energy yield and photon yield. This formula produces bremsstrahlung energy yield and photon yield in the energy range \(0.1668\,\hbox {MeV}< E_{\mathrm {max}}<2.274\hbox { MeV}\) for thick targets within the atomic number range \(13<Z<83\). The values produced by the present formula are compared with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A Mangiarotti and M N Martins, Radiat. Phys. Chem. 141, 312 (2017)

    Article  ADS  Google Scholar 

  2. H C Manjunatha and B Rudraswamy, Radiat. Meas. 42(2), 251 (2007)

    Article  Google Scholar 

  3. E Haug, Radiat. Phys. Chem. 77(3), 207 (2008)

    Article  ADS  Google Scholar 

  4. F Tessier and I Kawrakow, Nucl. Instrum. Methods Phys. Res. B 266(4), 625 (2008)

    Article  ADS  Google Scholar 

  5. A Omar, P Andreo and G Poludniowski, Radiat. Phys. Chem. 148, 73 (2018)

    Article  ADS  Google Scholar 

  6. H C Manjunatha and B Rudraswamy, Appl. Radiat. Isot. 65(4), 397 (2007)

    Article  Google Scholar 

  7. A Poškus, Comput. Phys. Commun. 232, 237 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. A Singh, T Singh and A S Dhaliwal, Radiat. Phys. Chem. 141, 207 (2017)

    Article  ADS  Google Scholar 

  9. A Sandrock, S R Kelner and W Rhode, Phys. Lett. B 776, 350 (2018)

    Article  ADS  Google Scholar 

  10. B Singh, Radiat. Phys. Chem. 150, 82 (2018)

    Article  ADS  Google Scholar 

  11. Y Jung, Phys. Lett. A 378(30–31), 2176 (2014)

    Article  ADS  Google Scholar 

  12. S Prajapati, B Singh, B K Singh and R Shanker, Radiat. Phys. Chem. 153, 92 (2018)

    Article  ADS  Google Scholar 

  13. Kunashenko, Nucl. Instrum. Methods Phys. Res. B 309, 88 (2013)

    Article  ADS  Google Scholar 

  14. A Minter and D Jenkins, Comput. Phys. Commun. 59(3), 499 (1990)

    Article  ADS  Google Scholar 

  15. A A Al-Beteri and D E Raeside, Nucl. Instrum. Methods Phys. Res. B 44(2), 149 (1989)

    Article  ADS  Google Scholar 

  16. H C Manjunatha, Appl. Radiat. Isot. 94, 282 (2014)

    Article  Google Scholar 

  17. H C Manjunatha, Pramana – J. Phys. 89(3): 42 (2017)

    Google Scholar 

  18. D Mack and H Mitter, Phys. Lett. A 44(1), 71 (1973)

    Article  ADS  Google Scholar 

  19. H C Manjunatha, Ann. Nucl. Energy 59, 53 (2013)

    Article  Google Scholar 

  20. H C Manjunatha and B Rudraswamy, Radiat. Phys. Chem. 85, 95 (2013)

    Article  ADS  Google Scholar 

  21. S M Seltzer and M J Berger, At. Data Nucl. Data Tables 35, 345 (1986)

    Article  ADS  Google Scholar 

  22. H C Manjunatha and B Rudraswamy, Nucl. Instrum. Methods A 572, 958 (2007)

    Article  ADS  Google Scholar 

  23. H C Manjunatha and B Rudraswamy, Nucl. Instrum. Methods A 619, 326 (2010)

    Article  ADS  Google Scholar 

  24. H C Manjunatha and B Rudraswamy, Radiat. Meas. 47(1), 100 (2012)

    Article  Google Scholar 

  25. H C Manjunatha and B Rudraswamy, Nucl. Instrum. Methods A 632, 18 (2011)

    Article  ADS  Google Scholar 

  26. N Starfelt and N L Svantesson, Phys. Rev. 97, 708 (1955)

    Article  ADS  Google Scholar 

  27. Shivaramu, J. Appl. Phys. 68(1), 1225 (1990)

  28. A A Markowicz and R E VanGriken, Anal. Chem. 56, 2049 (1984)

    Article  Google Scholar 

  29. H K Tseng and R H Pratt, Phys. Rev. A 3, 100 (1971)

    Article  ADS  Google Scholar 

  30. S S Martin and J Berger, At. Data Nucl. Data Tables 35, 345 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H C Manjunatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, H.C. Empirical formula for beta-particle-induced bremsstrahlung yields. Pramana - J Phys 94, 136 (2020). https://doi.org/10.1007/s12043-020-02002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02002-y

Keywords

PACS Nos

Navigation