Skip to main content
Log in

Bacterial degradation of phthalate isomers and their esters

  • Review
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Phthalate isomers and their esters are used heavily in various industries. Excess use and leaching from the product pose them as major pollutants. These chemicals are toxic, teratogenic, mutagenic and carcinogenic in nature. Various aspects like toxicity, diversity in the aerobic bacterial degradation, enzymes and genetic organization of the metabolic pathways from various bacterial strains are reviewed here. Degradation of these esters proceeds by the action of esterases to form phthalate isomers, which are converted to dihydroxylated intermediates by specific and inducible phthalate isomer dioxygenases. Metabolic pathways of phthalate isomers converge at 3,4-dihydroxybenzoic acid, which undergoes either ortho- or meta- ring cleavage and subsequently metabolized to the central carbon pathway intermediates. The genes involved in the degradation are arranged in operons present either on plasmid or chromosome or both, and induced by specific phthalate isomer. Understanding metabolic pathways, diversity and their genetic regulation may help in constructing bacterial strains through genetic engineering approach for effective bioremediation and environmental clean up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akita K, Naitou C and Maruyama K (2001) Purification and characterization of an esterase from Micrococcus sp. YGJ1 hydrolyzing phthalate esters. Biosci Biotechnol Biochem 65:1680–1683

    Article  PubMed  CAS  Google Scholar 

  2. Autian J (1973) Toxicity and health threats of phthalate esters: review of the literature Environ Health Perspect 4:3–26

    Article  PubMed  CAS  Google Scholar 

  3. Batie CJ and Ballou DP (1990) Phthalate dioxygenase Methods. Enzymol 188:61–70

    Article  CAS  Google Scholar 

  4. Batie CJ, LaHaie E and Ballou DP (1987) Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J Biol Chem 262:1510–1518

    PubMed  CAS  Google Scholar 

  5. Bull C and Ballou DP (1981) Purification and properties of protocatechuate 3,4-dioxygenase from Pseudomonas putida. A new iron to subunit stoichiometry. J Biol Chem 256:12673–12680

    PubMed  CAS  Google Scholar 

  6. Cartwright CD, Owen SA, Thompson IP and Burns RG (2000) Biodegradation of diethyl phthalate in soil by a novel pathway FEMS. Microbiol Lett 186:27–34

    Article  CAS  Google Scholar 

  7. Caughey WS, Hellerman L and Smiley JD (1957) L-glutamic acid dehydrogenase; structural requirements for substrate competition; effect of thyroxine. J Biol Chem 224:591–607

    PubMed  CAS  Google Scholar 

  8. Chang BV, Liao CS and Yuan SY (2005) Anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan. Chemosphere 58:1601–1607

    Article  PubMed  CAS  Google Scholar 

  9. Chang BV, Liao GS and Yuan SY (2005) Anaerobic degradation of di-n-butyl phthalate and di-(2-ethylhexyl) phthalate in sludge. Bull Environ Contam Toxicol 75:775–782

    Article  PubMed  CAS  Google Scholar 

  10. Chang BV, Yang CM, Cheng CH and Yuan SY (2004) Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55:533–538

    Article  PubMed  CAS  Google Scholar 

  11. Chang HK and Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537

    PubMed  CAS  Google Scholar 

  12. Chang HK and Zylstra GJ (1999) Characterization of the phthalate permease OphD from Burkholderia cepacia ATCC 17616. J Bacteriol 181:6197–6199

    PubMed  CAS  Google Scholar 

  13. Chang HK and Zylstra GJ (1999) Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia. DBO1 J Bacteriol 181:3069–3075

    CAS  Google Scholar 

  14. Chatterjee S and Dutta TK (2003) Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 309:36–43

    Article  PubMed  CAS  Google Scholar 

  15. Choi KY, Kim D, Chae JC, Zylstra GJ and Kim E (2007) Requirement of duplicated operons for maximal metabolism of phthalate by Rhodococcus sp. strain DK17 Biochem Biophys Res Commun 357:766–771

    Article  PubMed  CAS  Google Scholar 

  16. Choi KY, Kim D, Sul WJ, Chae JC, Zylstra GJ, Kim YM and Kim E (2005) Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol Lett 252:207–213

    Article  PubMed  CAS  Google Scholar 

  17. Colborn T, vom Saal FS and Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101:378–384

    Article  PubMed  CAS  Google Scholar 

  18. Correll CC, Batie CJ, Ballou DP and Ludwig ML (1992) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe-2S]. Science 258:1604–1610

    Article  PubMed  CAS  Google Scholar 

  19. Cunliffe D, Leason M, Parkin D and Lea PJ (1983) The inhibition of glutamate dehydrogenase by derivatives of isophthalic acid. Phytochemistry 22:1357–1360

    Article  CAS  Google Scholar 

  20. Dai G, Cui L, Song L, Cheng J, Zhong Y, Zhao R and Wang X (2005) Bladder epithelial cell proliferation of rats induced by terephthalic acid-calculi. Food Chem Toxicol 43:217–224

    Article  PubMed  CAS  Google Scholar 

  21. Dai GD, Cui LB, Song L, Zhao RZ, Cheng JF, Liu MX, Zhou JW, Xiao H and Wang XR (2005) Induction of bladder lesion by terephthalic acid and its mechanism. Biomed Environ Sci 18:211–219

    PubMed  CAS  Google Scholar 

  22. Den HE and Schoeters G (2006) Endocrine disrupters and human puberty. Int J Androl 29:264–271

    Article  CAS  Google Scholar 

  23. Deveryshetty J, Suvekbala V, Varadamshetty G and Phale PS (2007) Metabolism of 2-, 3-and 4-hydroxybenzoates by soil isolates Alcaligenes sp. strain PPH and Pseudomonas sp. strain PPD. FEMS Microbiol Lett 268:59–66

    Article  PubMed  CAS  Google Scholar 

  24. Dillingham EO and Autian J (1973) Teratogenicity, mutagenicity, and cellular toxicity of phthalate esters. Environ Health Perspect 3:81–89

    Article  PubMed  CAS  Google Scholar 

  25. Durham DR, Stirling LA, Ornston LN and Perry JJ (1980) Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry 19:149–155

    Article  PubMed  CAS  Google Scholar 

  26. Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703

    Article  PubMed  CAS  Google Scholar 

  27. Eaton RW and Ribbons DW (1982) Metabolism of dimethylphthalate by Micrococcus sp. strain 12B. J Bacteriol 151:465–467

    PubMed  CAS  Google Scholar 

  28. Ejlertsson J and Svensson BH (1996) Degradation of bis(2-ethylhexyl) phthalate constituents under methanogenic conditions. Biodegradation 7:501–506

    Article  PubMed  CAS  Google Scholar 

  29. Evans WC (1955) The early intermediate fromed in the oxidative metabolism of phthalic acid by certain soil bacteria. Biochem J 61:x

    Google Scholar 

  30. Fang HH, Liang D and Zhang T (2007) Aerobic degradation of diethyl phthalate by Sphingomonas sp. Bioresour Technol 98:717–720

    Article  PubMed  CAS  Google Scholar 

  31. Fisher JS (2004) Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome Reproduction 127:305–315

    Article  PubMed  CAS  Google Scholar 

  32. Fujisawa H and Hayaishi O (1968) Protocatechuate 3,4-dioxygenase. I. Crystallization and characterization. J Biol Chem 243:2673–2681

    PubMed  CAS  Google Scholar 

  33. Gassner GT and Ballou DP (1995) Preparation and characterization of a truncated form of phthalate dioxygenase reductase that lacks an iron-sulfur domain Biochemistry 34:13460–13471

    Article  PubMed  CAS  Google Scholar 

  34. Gesler RM (1973) Toxicology of di-2-ethylhexyl phthalate and other phthalic acid ester plasticizers. Environ Health Perspect 3:73–79

    Article  PubMed  CAS  Google Scholar 

  35. Gibson DT and Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Microbial degradation of organic compounds, (Gibson DT ed), Marcel Dekker, New York, pp 181–252

    Google Scholar 

  36. Gray LE, Jr., Ostby J, Furr J, Price M, Veeramachaneni DN and Parks L (2000) Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci 58:350–365

    Article  PubMed  CAS  Google Scholar 

  37. Grifoll M, Selifonov SA and Chapman PJ (1994) Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274. Appl Environ Microbiol 60:2438–2449

    PubMed  CAS  Google Scholar 

  38. Gross FC and Colony JA (1973) The ubiquitous nature and objectionable characteristics of phthalate esters in aerospace technology. Environ Health Perspect 3:37–48

    Article  PubMed  CAS  Google Scholar 

  39. Habe H, Miyakoshi M, Chung J, Kasuga K, Yoshida T, Nojiri H and Omori T (2003) Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl Microbiol Biotechnol 61:44–54

    PubMed  CAS  Google Scholar 

  40. Hara H, Eltis LD, Davies JE and Mohn WW (2007) Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1. J Bacteriol 189:1641–1647

    Article  PubMed  CAS  Google Scholar 

  41. Hauser R, Meeker JD, Singh NP, Silva MJ, Ryan L, Duty S and Calafat AM (2007) DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod 22:688–695

    Article  PubMed  CAS  Google Scholar 

  42. Heitkamp MA, Freeman JP, Miller DW and Cerniglia CE (1988) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 54:2556–2565

    PubMed  CAS  Google Scholar 

  43. Hudson RC and Daniel RM (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106:767–792

    Article  PubMed  CAS  Google Scholar 

  44. Ito R, Seshimo F, Haishima Y, Hasegawa C, Isama K, Yagami T, Nakahashi K, Yamazaki H, Inoue K, Yoshimura Y, Saito K, Tsuchiya T and Nakazawa H (2005) Reducing the migration of di-2-ethylhexyl phthalate from polyvinyl chloride medical devices. Int J Pharm 303:104–112

    Article  PubMed  CAS  Google Scholar 

  45. Jaeger RJ and Rubin RJ (1973) Extraction, localization, and metabolism of di-2-ethylhexyl phthalate from PVC plastic medical devices. Environ Health Perspect 3:95–102

    Article  PubMed  CAS  Google Scholar 

  46. Jaeger RJ and Rubin RJ (1970) Plasticizers from plastic devices extraction, metabolism, and accumulation by biological systems. Science 170:460–462

    Article  PubMed  CAS  Google Scholar 

  47. Jianlong W, Lujun C, Hanchang S and Yi Q (2000) Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 41:1245–1248

    Article  PubMed  CAS  Google Scholar 

  48. Kelley I, Freeman JP, Evans FE and Cerniglia CE (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59:800–806

    PubMed  CAS  Google Scholar 

  49. Keyser P, Pujar BG, Eaton RW and Ribbons DW (1976) Biodegradation of the phthalates and their esters by bacteria. Environ Health Perspect 18:159–166

    Article  PubMed  CAS  Google Scholar 

  50. Kimura T and Ito Y (2001) Two bacterial mixed culture systems suitable for degrading terephthalate in wastewater. J Biosci Bioeng 91:416–418

    Article  PubMed  CAS  Google Scholar 

  51. Kleerebezem R, Hulshoff Pol LW and Lettinga G (1999) The role of benzoate in anaerobic degradation of terephthalate. Appl Environ Microbiol 65:1161–1167

    PubMed  CAS  Google Scholar 

  52. Kleerebezem R, Hulshoff Pol LW and Lettinga G (1999) Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65:1152–1160

    PubMed  CAS  Google Scholar 

  53. Kleerebezem R, Pol LW and Lettinga G (1999) Anaerobic biodegradability of phthalic acid isomers and related compounds. Biodegradation 10:63–73

    Article  PubMed  CAS  Google Scholar 

  54. Koch HM, Drexler H and Angerer J (2003) An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206:77–83

    Article  PubMed  CAS  Google Scholar 

  55. Krauskopf LG (1973) Studies on the toxicity of phthalates via ingestion. Environ Health Perspect 3:61–72

    Article  PubMed  CAS  Google Scholar 

  56. Krishnan S, Prabhu Y and Phale P (2004) o-Phthalic acid, a dead-end product in one of the two pathways of phenanthrene degradation in Pseudomonas sp. strain PP2. Indian J Biochem Biophys 41:227–232

    CAS  Google Scholar 

  57. Latini G (2005) Monitoring phthalate exposure in humans. Clin Chim Acta 361:20–29

    Article  PubMed  CAS  Google Scholar 

  58. Li J and Gu JD (2006) Biodegradation of dimethyl terephthalate by Pasteurella multocida Sa follows an alternative biochemical pathway. Ecotoxicology 15:391–397

    Article  PubMed  CAS  Google Scholar 

  59. Li LH, Jester WF and Orth JM (1998) Effects of Relatively Low Levels of Mono-(2-Ethylhexyl) Phthalate on Cocultured Sertoli Cells and Gonocytes from Neonatal Rats. Toxicology and Applied Pharmacology 153:258–265

    Article  PubMed  CAS  Google Scholar 

  60. Lovekamp-Swan T and Davis BJ (2003) Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Perspect 111:139–145

    PubMed  CAS  Google Scholar 

  61. Lu KY, Tseng FW, Wu CJ and Liu PS (2004) Suppression by phthalates of the calcium signaling of human nicotinic acetylcholine receptors in human neuroblastoma SH-SY5Y cells. Toxicology 200:113–121

    Article  PubMed  CAS  Google Scholar 

  62. Ludwig ML, Ballou DP and Noodleman L (2001) Phthalate dioxygenase reductase. In: Handbook of Metalloproteins, Vol 1 (Messerschmidt A, Huber R, Poulos T and Weighardt K eds), John Whiley and Sons, Co., New York, pp 652–667

    Google Scholar 

  63. Malterud KE, Rydland KM and Haugli T (1999) Inhibition of 15-lipoxygenase by phthalate plasticizers Bull Environ Contam Toxicol 62:352–355

    Article  PubMed  CAS  Google Scholar 

  64. Mampel J, Providenti MA and Cook AM (2005) Protocatechuate 4,5-dioxygenase from Comamonas testosteroni T-2: biochemical and molecular properties of a new subgroup within class III of extradiol dioxygenases. Arch Microbiol 183:130–139

    Article  PubMed  CAS  Google Scholar 

  65. Marcel YL (1973) Determination of di-2-ethylhexyl phthalate levels in human blood plasma and cryoprecipitates. Environ Health Perspect 3:119–121

    Article  PubMed  CAS  Google Scholar 

  66. Maruyama K, Akita K, Naitou C, Yoshida M and Kitamura T (2005) Purification and characterization of an esterase hydrolyzing monoalkyl phthalates from Micrococcus sp. YGJ1 J Biochem (Tokyo) 137:27–32

    CAS  Google Scholar 

  67. Maruyama K, Shibayama T, Ichikawa A, Sakou Y, Yamada S and Sugisaki H (2004) Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci Biotechnol Biochem 68:1434–1441

    Article  PubMed  CAS  Google Scholar 

  68. Moody JD, Freeman JP, Doerge DR and Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

    Article  PubMed  CAS  Google Scholar 

  69. Moore NP (2000) The oestrogenic potential of the phthalate esters. Reprod Toxicol 14:183–192

    Article  PubMed  CAS  Google Scholar 

  70. Nallii S, Cooper DG and Nicell JA (2002) Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation 13:343–352

    Article  PubMed  CAS  Google Scholar 

  71. Niazi JH, Prasad DT and Karegoudar TB (2001) Initial degradation of dimethylphthalate by esterases from Bacillus species. FEMS Microbiol Lett 196:201–205

    Article  PubMed  CAS  Google Scholar 

  72. Nishioka T, Iwata M, Imaoka T, Mutoh M, Egashira Y, Nishiyama T, Shin T and Fujii T (2006) A mono-2-ethylhexyl phthalate hydrolase from a Gordonia sp. that is able to dissimilate di-2-ethylhexyl phthalate. Appl Environ Microbiol 72:2394–2399

    Article  PubMed  CAS  Google Scholar 

  73. Nomura Y, Harashima S and Oshima Y (1989) A simple method for detection of enzyme activities involved in the initial step of phthalate degradation in microorganisms. J Ferment Bioeng 67:291–296

    Article  CAS  Google Scholar 

  74. Nozawa T and Maruyama Y (1988) Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J Bacteriol 170:5778–5784

    PubMed  CAS  Google Scholar 

  75. Orville AM, Lipscomb JD and Ohlendorf DH (1997) Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry 36:10052–10066

    Article  PubMed  CAS  Google Scholar 

  76. Overhage J, Kresse AU, Priefert H, Sommer H, Krammer G, Rabenhorst J and Steinbuchel A (1999) Molecular characterization of the genes pcaG and pcaH, encoding protocatechuate 3,4-dioxygenase, which are essential for vanillin catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65:951–960

    PubMed  CAS  Google Scholar 

  77. Pan G, Hanaoka T, Yoshimura M, Zhang S, Wang P, Tsukino H, Inoue K, Nakazawa H, Tsugane S and Takahashi K (2006) Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect 114:1643–1648

    PubMed  CAS  Google Scholar 

  78. Patil NK, Kundapur R, Shouche YS and Karegoudar TB (2006) Degradation of plasticizer di-n-butylphthalate by Delftia sp. TBKNP-05. Curr Microbiol 52:369–374

    Article  PubMed  CAS  Google Scholar 

  79. Prabhu Y and Phale PS (2003) Biodegradtion of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351

    PubMed  CAS  Google Scholar 

  80. Pujar BG and Ribbons DW (1985) Phthalate metabolism in Pseudomonas fluorescens PHK: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol 49:374–376

    PubMed  CAS  Google Scholar 

  81. Qiu YL, Sekiguchi Y, Hanada S, Imachi H, Tseng IC, Cheng SS, Ohashi A, Harada H and Kamagata Y (2006) Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. Arch Microbiol 185:172–182

    Article  PubMed  CAS  Google Scholar 

  82. Qiu YL, Sekiguchi Y, Imachi H, Kamagata Y, Tseng IC, Cheng SS, Ohashi A and Harada H (2004) Identification and isolation of anaerobic, syntrophic phthalate isomerdegrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl Environ Microbiol 70:1617–1626

    Article  PubMed  CAS  Google Scholar 

  83. Quan CS, Liu Q, Tian WJ, Kikuchi J and Fan SD (2005) Biodegradation of an endocrine-disrupting chemical, di-2-ethylhexyl phthalate, by Bacillus subtilis No. 66. Appl Microbiol Biotechnol 66:702–710

    Article  PubMed  CAS  Google Scholar 

  84. Rani M, Prakash D, Sobti RC and Jain RK (1996) Plasmid-mediated degradation of o-phthalate and salicylate by a Moraxella sp. Biochem Biophys Res Commun 220:377–381

    Article  PubMed  CAS  Google Scholar 

  85. Rogers KS, Boots MR and Boots SG (1972) Molecular interactions of six aromatic competitive inhibitors with bovine liver glutamate dehydrogenase. Biochim Biophys Acta 258:343–350

    PubMed  CAS  Google Scholar 

  86. Rubin RJ and Jaeger RJ (1973) Some pharmacologic and toxicologic effects of di-2-ethylhexyl phthalate (DEHP) and other plasticizers. Environ Health Perspect 3:53–59

    Article  PubMed  CAS  Google Scholar 

  87. Sasoh M, Masai E, Ishibashi S, Hara H, Kamimura N, Miyauchi K and Fukuda M (2006) Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl Environ Microbiol 72:1825–1832

    Article  PubMed  CAS  Google Scholar 

  88. Schlafli HR, Weiss MA, Leisinger T and Cook AM (1994) Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176:6644–6652

    PubMed  CAS  Google Scholar 

  89. Shelton DR, Boyd SA and Tiedje JM (1984) Anaerobic biodegradation of phthalaic acid esters in sludge. Environ Sci Technol 18:93–97

    Article  CAS  Google Scholar 

  90. Shigematsu T, Yumihara K, Ueda Y, Morimura S and Kida K (2003) Purification and gene cloning of the oxygenase component of the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7 FEMS. Microbiol Lett 220:255–260

    Article  CAS  Google Scholar 

  91. Stingley RL, Brezna B, Khan AA and Cerniglia CE (2004) Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150:3749–3761

    Article  PubMed  CAS  Google Scholar 

  92. Suemori A, Kurane R and Tomizuka N (1993) Purification and properties of phthalate oxygenase from Rhodococcus erythropolis S-1. Biosci Biotechnol Biochem 57:1482–1486

    Article  CAS  Google Scholar 

  93. Suemori A, Nikajama N, Kurane R and Nakamura Y (1995) Production of 3,4-dihydroxyphthalate from phthalate by a membrane-bound two-enzyme system from Rhodococcus erythropolis. Appl Microbiol Biotechnol 43:470–472

    Article  CAS  Google Scholar 

  94. Sugatt RH, O’grady DP, Banerjee S, Howard PH and Gledhill WE (1984) Shake Flask Biodegradation of 14 Commercial Phthalate Esters. Appl Environ Microbiol 47:601–606

    PubMed  CAS  Google Scholar 

  95. Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M and Mitsui Y (1999) Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure 7:953–965

    Article  PubMed  CAS  Google Scholar 

  96. Tarasev M, Kaddis CS, Yin S, Loo JA, Burgner J and Ballou DP (2007) Similar enzymes, different structures: Phthalate dioxygenase is an alpha(3)alpha(3) stacked hexamer, not an alpha(3)beta(3) trimer like “normal” Rieske oxygenases. Arch Biochem Biophys. 466:31–39

    Article  PubMed  CAS  Google Scholar 

  97. Teil MJ, Blanchard M and Chevreuil M (2006) Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci Total Environ 354:212–223

    Article  PubMed  CAS  Google Scholar 

  98. Tepper LB (1973) Phthalic acid esters — an overview. Environ Health Perspect 3:179–182

    Article  PubMed  CAS  Google Scholar 

  99. Vamsee-Krishna C, Mohan Y and Phale PS (2006) Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72:1263–1269

    Article  PubMed  CAS  Google Scholar 

  100. Vega D and Bastide J (2003) Dimethylphthalate hydrolysis by specific microbial esterase. Chemosphere 51:663–668

    Article  PubMed  CAS  Google Scholar 

  101. Vetting MW, D’Argenio DA, Ornston LN and Ohlendorf DH (2000) Structure of Acinetobacter strain ADP1 protocatechuate 3,4-dioxygenase at 2.2 A resolution: implications for the mechanism of an intradiol dioxygenase. Biochemistry 39:7943–7955

    Article  PubMed  CAS  Google Scholar 

  102. Wang Y, Fan Y and Gu JD (2003) Microbial degradation of the endocrine-disrupting chemicals phthalic acid and dimethyl phthalate ester under aerobic conditions. Bull Environ Contam Toxicol 71:810–818

    Article  PubMed  CAS  Google Scholar 

  103. Wang YP and Gu JD (2006) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15:549–557

    Article  PubMed  CAS  Google Scholar 

  104. Wang YZ, Zhou Y and Zylstra GJ (1995) Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect 103:9–12

    Article  PubMed  CAS  Google Scholar 

  105. Whittaker JW, Orville AM and Lipscomb JD (1990) Protocatechuate 3,4-dioxygenase from Brevibacterium fuscum. Methods Enzymol 188:82–88

    Article  PubMed  CAS  Google Scholar 

  106. Wilkinson CF and Lamb JC (1999) The potential health effects of phthalate esters in children’s toys: a review and risk assessment. Regul Toxicol Pharmacol 30:140–155

    Article  PubMed  CAS  Google Scholar 

  107. Yan H and Pan G (2004) Increase in biodegradation of dimethyl phthalate by Closterium lunula using inorganic carbon. Chemosphere 55:1281–1285

    Article  PubMed  CAS  Google Scholar 

  108. Yoshida R, Hori K, Fujiwara M, Saeki Y and Kagamiyama H (1976) Nonidentical subunits of protocatechuate 3,4-dioxygenase. Biochemistry 15:4048–4053

    Article  PubMed  CAS  Google Scholar 

  109. Yun SH, Yun CY and Kim SI (2004) Characterization of protocatechuate 4,5-dioxygenase induced from p-hydroxybenzoate-cultured Pseudomonas sp. K82. J Microbiol 42:152–155

    PubMed  CAS  Google Scholar 

  110. Zhu J, Phillips SP, Feng YL and Yang X (2006) Phthalate esters in human milk: concentration variations over a 6-month postpartum time. Environ Sci Technol 40:5276–5281

    Article  PubMed  CAS  Google Scholar 

  111. Zylstra GJ, Olsen RH and Ballou DP (1989) Cloning, expression, and regulation of the Pseudomonas cepacia protocatechuate 3,4-dioxygenase genes. J Bacteriol 171:5907–5914

    PubMed  CAS  Google Scholar 

  112. Zylstra GJ, Olsen RH and Ballou DP (1989) Genetic organization and sequence of the Pseudomonas cepacia genes for the alpha and beta subunits of protocatechuate 3,4-dioxygenase. J Bacteriol 171:5915–5921

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant S. Phale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vamsee-Krishna, C., Phale, P.S. Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48, 19–34 (2008). https://doi.org/10.1007/s12088-008-0003-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-008-0003-8

Keywords

Navigation