Skip to main content
Log in

Production of Red Pigments by a Newly Isolated Talaromyces aurantiacus Strain with LED Stimulation for Screen Printing

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Microbial pigments have been widely applied to printing in food, textile, and paper industries as a sustainable alternative to synthetic dyes. Herein, we isolated a novel Talaromyces aurantiacus strain with a strong ability to produce red pigments. We further studied pigment production conditions, stability, screen printing application, and bioactivities. Our results showed that sucrose was a favourable carbon source and the addition of l-histidine significantly enhanced the production of red pigments. Pigment production was strictly photo-regulated with effective wavelengths around 450 nm (blue light). We mixed the red pigments with cellulosic materials and explored their application potentials for screen printing on paper, cotton fabrics, and polymeric carriers. The printing density was significantly improved from 0.3 to 0.7 by overlay printing. T. aurantiacus pigments could be stably stored at pH 5–11, temperature – 10 to 70 °C, and redox potential − 200 to 300 mV. Moreover, the stable ranges were extended to pH 1–11 and temperature over 100 °C after screen-printed on paper. The red pigments exhibited antioxidant activity towards 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (IC50 10.4 mg L−1 in solution). Our results further indicated the red pigments by T. aurantiacus was environmentally friendly based on acetylcholinesterase activity assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gondil VS, Asif M, Bhalla TC (2017) Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech 7:338. https://doi.org/10.1007/s13205-017-0979-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M (2020) Bio-applications of multifunctional melanin nanoparticles: from nanomedicine to nanocosmetics. Nanomaterials 10:2276. https://doi.org/10.3390/nano10112276

    Article  CAS  PubMed Central  Google Scholar 

  3. Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry-challenges and the way forward. Front Nutr 6:7. https://doi.org/10.3389/fnut.2019.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghosh S, Dam B (2020) Genome shuffling improves pigment and other bioactive compound production in Monascus purpureus. Appl Microbiol Biotechnol 104:10451–10463. https://doi.org/10.1007/s00253-020-10987-0

    Article  CAS  PubMed  Google Scholar 

  5. Kot AM, Błażejak S, Kurcz A, Bryś J, Gientka I, Bzducha-Wróbel A, Maliszewska M, Reczek L (2017) Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis. Electron J Biotechn 27:25–31. https://doi.org/10.1016/j.ejbt.2017.01.007

    Article  CAS  Google Scholar 

  6. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA (2018) Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ Sci Pollut Res Int 25:5164–5180. https://doi.org/10.1007/s11356-017-8855-2

    Article  CAS  PubMed  Google Scholar 

  7. Narsing Rao MP, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1113. https://doi.org/10.3389/fmicb.2017.01113

    Article  PubMed  PubMed Central  Google Scholar 

  8. da Costa Cardoso LA, Kanno KYF, Karp SG (2017) Microbial production of carotenoids: a review. Afr J Biotechnol 16:139–146. https://doi.org/10.5897/AJB2016.15763

    Article  Google Scholar 

  9. Saranya R, Jayaprakash J, Alagumuthu TS (2012) Dyeing of silk fabric with phenazine from Pseudomonas species. Color Technol 128:1–6. https://doi.org/10.1111/j.1478-4408.2012.00397.x

    Article  CAS  Google Scholar 

  10. Salama HA, Badr AN, Elkhadragy MF, Hussein AMS, Hussein HM (2021) New antifungal microbial pigment applied to improve safety and quality of processed meat-products. Microorganisms 9:989. https://doi.org/10.3390/microorganisms9050989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rana B, Bhattacharyya M, Patni B, Arya M, Joshi GK (2021) The realm of microbial pigments in the food color market. Front Sustain Food Syst 5:54. https://doi.org/10.3389/fsufs.2021.603892

    Article  Google Scholar 

  12. Wang H, Ren Z, Li P, Gu Y, Liu G, Yao J (2011) Improvement of the production of a red pigment in Penicillium sp. HSD07B synthesized during co-culture with Candida tropicalis. Bioresour Technol 102:6082–6087. https://doi.org/10.1016/j.biortech.2011.01.040

    Article  CAS  Google Scholar 

  13. Wang H, Zhou Z, Wang G, Liu Y, Li H, Li P (2013) The glucose metabolic frame of conditions induce the overproduction of a co-culture pigment: induction mechanism of the pigment and development of a specific eutrophic–oligotrophic transition cultivation system. Bioprocess Biosyst Eng 36:947–957. https://doi.org/10.1007/s00449-012-0829-7

    Article  CAS  Google Scholar 

  14. Palacio-Barrera AM, Areiza D, Zapata P, Atehortúa L, Correa C, Peñuela-Vásquez M (2019) Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi. Biotechnol Rep 21:e00308. https://doi.org/10.1016/j.btre.2019.e00308

    Article  Google Scholar 

  15. Häggblom P, Unestam T (1979) Blue light inhibits mycotoxin production and increases total lipids and pigmentation in Alternaria alternata. Appl Environ Microbiol 38:1074–1077. https://doi.org/10.1128/AEM.38.6.1074-1077.1979

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schmidt-Heydt M, Rüfer C, Raupp F, Bruchmann A, Perrone G, Geisen R (2011) Influence of light on food relevant fungi with emphasis on ochratoxin producing species. Int J Food Microbiol 145:229–237. https://doi.org/10.1016/j.ijfoodmicro.2010.12.022

    Article  CAS  PubMed  Google Scholar 

  17. Agurto MEP, Gutierrez SMV, Court RCV, Chen HL, Robinson SC (2020) Oil-based fungal pigment from Scytalidium cuboideum as a textile dye. J Fungi 6:53. https://doi.org/10.3390/jof6020053

    Article  CAS  Google Scholar 

  18. Tam SK, Fung KY, Poon GSH, Ng KM (2016) Product design: metal nanoparticle-based conductive inkjet inks. AIChE J 62:2740–2753. https://doi.org/10.1002/aic.15271

    Article  CAS  Google Scholar 

  19. Agurto MEP, Gutierrez SMV, Chen HL, Robinson SC (2017) Wood-rotting fungal pigments as colorant coatings on oil-based textile dyes. Coatings 7:152. https://doi.org/10.3390/coatings7100152

    Article  CAS  Google Scholar 

  20. Babu GV, Perumal P, Muthu S, Pichai S, Narayan KS, Malairaj S (2018) Enhanced method for high spatial resolution surface imaging and analysis of fungal spores using scanning electron microscopy. Sci Rep 8:16278. https://doi.org/10.1038/s41598-018-34629-8

    Article  CAS  Google Scholar 

  21. Xu Q, Sun M, Ning J, Ye Z, Chen J, Fu R (2019) The core role of Bacillus subtilis and Aspergillus fumigatus in pile-fermentation processing of Qingzhuan brick tea. Indian J Microbiol 59:288–294. https://doi.org/10.1007/s12088-019-00802-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subramanian P, Gurunathan J (2020) Differential production of pigments by halophilic bacteria under the effect of salt and evaluation of their antioxidant activity. Appl Biochem Biotech 190:391–409. https://doi.org/10.1007/s12010-019-03107-w

    Article  CAS  Google Scholar 

  24. Pronto JRD, Sarankhuu B, Ko KS, Rhee BD, Kim N, Mishchenko NP, Fedoreyev SA, Stonik VA, Han J (2014) Acetylcholinesterase inhibitory activity of pigment echinochrome a from sea urchin Scaphechinus mirabilis. Mar Drugs 12:3560–3573. https://doi.org/10.3390/md12063560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Isbrandt T, Tolborg G, Ødum A, Workman M, Larsen TO (2020) Atrorosins: a new subgroup of Monascus pigments from Talaromyces atroroseus. Appl Microbiol Biotechnol 104:615–622. https://doi.org/10.1007/s00253-019-10216-3

    Article  CAS  PubMed  Google Scholar 

  26. Bühler RMM, Müller BL, Moritz DE, Vendruscolo F, Oliveira D, Ninow JL (2015) Influence of light intensity on growth and pigment production by Monascus ruber in submerged fermentation. Appl Biochem Biotechnol 176:1277–1289. https://doi.org/10.1007/s12010-015-1645-8

    Article  CAS  PubMed  Google Scholar 

  27. Rehman N, Dixit PP (2020) Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of Pseudomonasaeruginosa NR1. J King Saud Univ Sci 32:745–752. https://doi.org/10.1016/j.jksus.2019.01.004

    Article  Google Scholar 

  28. Thakker AM, Sun D (2021) Sustainable plant-based bioactive materials for functional printed textiles. J Text Inst 112:1324–1358. https://doi.org/10.1080/00405000.2020.1810474

    Article  Google Scholar 

  29. Ding F, Hu B, Lan S, Wang H (2020) Flexographic and screen printing of carboxymethyl chitosan based edible inks for food packaging applications. Food Packag Shelf Life 26:100559. https://doi.org/10.1016/j.fpsl.2020.100559

    Article  Google Scholar 

  30. Mukherjee S, Bera SC (1998) Low temperature laser flash photolysis and spectral studies of Methyl Red. J Chem Soc Faraday Trans 94:67–71. https://doi.org/10.1039/A705642G

    Article  Google Scholar 

  31. Venil CK, Velmurugan P, Dufossé L, Devi PR, Ravi AV (2020) Fungal pigments: potential coloring compounds for wide ranging applications in textile dyeing. J Fungi 6:68. https://doi.org/10.3390/jof6020068

    Article  CAS  Google Scholar 

  32. Suwannarach N, Kumla J, Nishizaki Y, Sugimoto N, Meerak J, Matsui K, Lumyong S (2019) Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Appl Microbiol Biot 103:6973–6987. https://doi.org/10.1007/s00253-019-09926-5

    Article  CAS  Google Scholar 

  33. Ghosh S, Sarkar T, Das A, Chakraborty R (2022) Natural colorants from plant pigments and their encapsulation: an emerging window for the food industry. LWT-Food Sci Technol 153:112527. https://doi.org/10.1016/j.lwt.2021.112527

    Article  CAS  Google Scholar 

  34. Keekan KK, Hallur S, Modi PK, Shastry RP (2020) Antioxidant activity and role of culture condition in the optimization of red pigment production by Talaromyces purpureogenus KKP through response surface methodology. Curr Microbiol 77:1780–1789. https://doi.org/10.1007/s00284-020-01995-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2017A030310341), the Scientific Research and Technology Development Program of Guangxi (No. AA18118013-9), and the Guangzhou Science and Technology Program Key Project (No. 201704020038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2775 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Luo, H., Wu, X. et al. Production of Red Pigments by a Newly Isolated Talaromyces aurantiacus Strain with LED Stimulation for Screen Printing. Indian J Microbiol 62, 280–292 (2022). https://doi.org/10.1007/s12088-022-01008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01008-x

Keywords

Navigation