Skip to main content

Advertisement

Log in

Evaluation of biocompatibility and anti-glioma efficacy of doxorubicin and irinotecan drug-eluting bead suspensions in alginate

  • Research Articles
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Introduction

Chemotherapeutic drug-eluting beads (DEBs) are microspheres that are in clinical use for intraarterial chemoembolisation of liver cancer. Here we report on the biocompatibility and anti-tumour efficacy of DEBs after intratumoral application in a rat BT4Ca glioma model.

Methods and results

Doxorubicin and irinotecan-eluting DEBs were suspended in a Ca2+-free aqueous alginate solution that provides a sol-gel transition when injected into the Ca2+ rich brain tissue. In this way the DEBs are immobilised at the implantation site. Forced elution studies in vitro using a USP-4 flow-through apparatus demonstrated that the alginate excipient helped to reduce the burst effect and rate the elution from the beads. From the in vivo evaluation, doxorubicin DEBs demonstrated a significant local toxicity, while irinotecan-loaded DEBs showed good local tissue compatibility. Doxorubicin at higher concentrations and irinotecan-loaded DEBs were found to decrease tumour volume, increase survival time and decrease the Ki67 proliferation index of the tumour. Doxorubicin was shown by fluorescent microscopy to diffuse into the peritumoral tissue, but also penetrates along white matter tracts, to more distant areas.

Discussion

We conclude that the alginate suspension of irinotecan DEBs can be considered safe and effective in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stupp R, van den Bent MJ, Hegi ME (2005) Optimal role of temozolomide in the treatment of malignant gliomas. Curr Neurol Neurosci Rep 5:198–206

    Article  PubMed  CAS  Google Scholar 

  2. Stupp R, Mayer M, Kann R et al (2009) Neoadjuvant chemotherapy and radiotherapy followed by surgery in selected patients with stage IIIB nonsmall-cell lung cancer: a multicentre phase II trial. Lancet Oncol 10:785–793

    Article  PubMed  CAS  Google Scholar 

  3. Gururangan S, Friedman HS (2002) Innovations in design and delivery of chemotherapy for brain tumors. Neuroimaging Clin N Am 12:583–597

    Article  PubMed  Google Scholar 

  4. Lesniak MS, Brem H (2004) Targeted therapy for brain tumours. Nat Rev Drug Discov 3:499–508

    Article  PubMed  CAS  Google Scholar 

  5. Rautioa J, Chikhale PJ (2004) Drug delivery systems for brain tumor therapy. Curr Pharm Des 10:1341–1353

    Article  PubMed  Google Scholar 

  6. Guerin C, Olivi A, Weingart JD et al (2004) Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Invest New Drugs 22:27–37

    Article  PubMed  CAS  Google Scholar 

  7. Westphal M, Hilt DC, Bortey E et al (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. NeuroOncol 5:79–88

    CAS  Google Scholar 

  8. Hart MG, Grant R, Garside R et al (2008) Chemotherapeutic wafers for high grade glioma. Cochrane Database Syst Rev CD007294

  9. Ranganath SH, Kee I, Krantz WB et al (2009) Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy. Pharm Res 26:2101–2114

    Article  PubMed  CAS  Google Scholar 

  10. Emerich DF, Winn SR, Hu Y et al (2000) Injectable chemotherapeutic microspheres and glioma I: enhanced survival following implantation into the cavity wall of debulked tumors. Pharm Res 17:767–775

    Article  PubMed  CAS  Google Scholar 

  11. Li KW, Dang W, Tyler BM et al (2003) Polilactofate microspheres for paclitaxel delivery to central nervous system malignancies. Clin Cancer Res 9: 3441–3447

    PubMed  CAS  Google Scholar 

  12. Storm PB, Renard VM, Moriarity JL et al (2004) Systemic BCNU enhances the efficacy of local delivery of a topoisomerase I inhibitor against malignant glioma. Cancer Chemother Pharmacol 54:361–367

    Article  PubMed  CAS  Google Scholar 

  13. Menei P, Jadaud E, Faisant N et al (2004) Stereotaxic implantation of 5-fluorouracil-releasing microspheres in malignant glioma. Cancer 100:405–410

    Article  PubMed  CAS  Google Scholar 

  14. Menei P, Capelle L, Guyotat J et al (2005) Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial. Neurosurgery 56:242–248

    Article  PubMed  Google Scholar 

  15. Lesniak MS, Upadhyay U, Goodwin R et al (2005) Local delivery of doxorubicin for the treatment of malignant brain tumors in rats. Anticancer Res 25:3825–3831

    PubMed  CAS  Google Scholar 

  16. Wang PP, Frazier J, Brem H (2002) Local drug delivery to the brain. Adv Drug Deliv Rev 54:987–1013

    Article  PubMed  CAS  Google Scholar 

  17. Kunwar S, Chang S, Westphal M et al (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 12:871–881

    Article  PubMed  CAS  Google Scholar 

  18. Lewis AL, Gonzalez MV, Lloyd AW et al (2006) DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol 17:335–342

    Article  PubMed  Google Scholar 

  19. Gonzalez MV, Tang Y, Phillips GJ et al (2008) Doxorubicin eluting beads-2: methods for evaluating drug elution and in-vitro:in-vivo correlation. J Mater Sci Mater Med 19:767–775

    Article  PubMed  CAS  Google Scholar 

  20. Baltes S, Freund I, Lewis AL et al (2010) Doxorubicin and irinotecan drug-eluting beads for treatment of glioma: a pilot study in a rat model. J Mater Sci Mater Med 21:1393–1402

    Article  PubMed  CAS  Google Scholar 

  21. Taylor RR, Tang Y, Gonzalez MV et al (2007) Irinotecan drug eluting beads for use in chemoembolization: in vitro and in vivo evaluation of drug release properties. Eur J Pharm Sci 30:7–14

    Article  PubMed  CAS  Google Scholar 

  22. Druckrey H, Landschutz C, Ivankovic S (1970) [Transplacental induction of malignant tumours of the nervous system. II. Ethyl-nitrosurea in 10 genetically defined strains of rats] Transplacentare Erzeugung maligner Tumoren des Nervensystems. II. Athyl-nitrosoharnstoff an 10 genetisch definierten Rattenstammen. Z Krebsforsch 73:371–386

    Article  PubMed  CAS  Google Scholar 

  23. Brownlee IA, Allen A, Pearson JP et al (2005) Alginate as a source of dietary fiber. Crit Rev Food Sci Nutr 45:497–510

    Article  PubMed  CAS  Google Scholar 

  24. Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630

    Article  PubMed  CAS  Google Scholar 

  25. Jork A, Thürmer F, Cramer H et al (2000) Biocompatible alginate from freshly collected Laminaria pallida for implantation. Appl Microbiol Biotechnol 53: 224–229

    Article  PubMed  CAS  Google Scholar 

  26. Elstad NL, Fowers KD (2009) OncoGel (ReGel/paclitaxel): clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev 61:785–794

    Article  PubMed  CAS  Google Scholar 

  27. Tyler B, Fowers KD, Li KW et al (2010) A thermal gel depot for local delivery of paclitaxel to treat experimental brain tumors in rats. J Neurosurg 113:210–217

    Article  PubMed  CAS  Google Scholar 

  28. Neuwelt EA, Glasberg M, Frenkel E, Barnett P (1983) Neurotoxicity of chemotherapeutic agents after blood-brain barrier modification: neuropathological studies. Ann Neurol 14:316–324

    Article  PubMed  CAS  Google Scholar 

  29. Zhou R, Mazurchuk R, Straubinger RM (2002) Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model. Cancer Res 62:2561–2566

    PubMed  CAS  Google Scholar 

  30. Kikuchi T, Saito R, Sugiyama S et al (2008) Convection-enhanced delivery of polyethylene glycolcoated liposomal doxorubicin: characterization and efficacy in rat intracranial glioma models. J Neurosurg 109:867–873

    Article  PubMed  CAS  Google Scholar 

  31. von Eckardstein KL, Reszka R, Kiwit JC (2005) Intracavitary chemotherapy (paclitaxel/carboplatin liquid crystalline cubic phases) for recurrent glioblastoma: clinical observations. J Neurooncol 74:305–309

    Article  Google Scholar 

  32. Eyol E, Boleij A, Taylor RR et al (2008) Chemoembolisation of rat colorectal liver metastases with drug eluting beads loaded with irinotecan or doxorubicin. Clin Exp Metastasis 25:273–282

    Article  PubMed  CAS  Google Scholar 

  33. Storm PB, Moriarity JL, Tyler B et al (2002) Polymer delivery of camptothecin against 9L gliosarcoma: release, distribution, and efficacy. J Neurooncol 56:209–217

    Article  PubMed  Google Scholar 

  34. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    Article  PubMed  CAS  Google Scholar 

  35. Kalyanasundaram S, Calhoun VD, Leong KW (1997) A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am J Physiol 273:R1810–1821

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brinker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glage, S., Lewis, A.L., Mertens, P. et al. Evaluation of biocompatibility and anti-glioma efficacy of doxorubicin and irinotecan drug-eluting bead suspensions in alginate. Clin Transl Oncol 14, 50–59 (2012). https://doi.org/10.1007/s12094-012-0761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0761-y

Keywords

Navigation